Группа авторов

Biodiesel Production


Скачать книгу

Rev. 16: 2070–2093.

      13 13 Wastes – Resource Conservation – Common Wastes & Materials. US Environmental Protection Agency. https://archive.epa.gov/wastes/conserve/materials/usedoil/web/html/oil.html.

      14 14 Ma, F. and Hanna, M.A. (1999). Biodiesel production: a review. Bioresour. Technol. 70: 1–15.

      15 15 Olubunmi, B.E., Karmakar, B., Aderemi, O.M. et al. (2020). Parametric optimization by Taguchi L9 approach towards biodiesel production from restaurant waste oil using Fe‐supported anthill catalyst. J. Environ. Chem. Eng. 8: 104288.

      16 16 Karmakar, B., Ghosh, B., and Halder, G. (2020). Sulfonated Mesua ferrea linn seed shell catalyzed biodiesel synthesis from castor oil – response surface optimization. Front. Energy Res. 8: 576792. https://doi.org/10.3389/fenrg.2020.576792.

      17 17 Srivastava, A. and Prasad, R. (2000). Triglycerides‐based diesel fuels. Renew. Sustain. Energy Rev. 4 (2): 111–133.

      18 18 Freedman, B., Pryde, E.H., and Mounts, T.L. (1984). Variables affecting the yields of fatty esters from transesterified vegetable oils. J. Am. Oil Chem. Soc. 61 (10): 1638–1643.

      19 19 Farobie, O., Leow, Z.Y.M., Samanmulya, T., and Matsumura, Y. (2016). New insights in biodiesel production using supercritical 1‐propanol. Energy Convers. Manag. 124: 212–218.

      20 20 Phan, A.N. and Phan, T.M. (2008). Biodiesel production from waste cooking oils. Fuel 87: 3490–3496.

      21 21 Singh, T.S. and Verma, T.N. (2019). Taguchi design approach for extraction of methyl ester from waste cooking oil using synthesized CaO as heterogeneous catalyst: response surface methodology optimization. Energy Convers. Manag. 182: 383–397.

      22 22 Maneerung, T., Kawi, S., Dai, Y., and Wang, C.H. (2016). Sustainable biodiesel production via transesterification of waste cooking oil by using CaO catalysts prepared from chicken manure. Energy Convers. Manag. 123: 487–497.

      23 23 Ngoya, T., Aransiola, E.F., and Oyekola, O. (2017). Optimization of biodiesel production from waste vegetable oil and eggshell ash. S. Afr. J. Chem. Eng. 23: 145–156. https://doi.org/10.1016/j.sajce.2017.05.003.

      24 24 Fan, Y., Wu, G., Su, F. et al. (2016). Lipase oriented‐immobilized on dendrimer‐coated magnetic multi‐walled carbon nanotubes toward catalyzing biodiesel production from waste vegetable oil. Fuel 178: 172–178.

      25 25 Shah, S., Sharma, S., and Gupta, M.N. (2004). Biodiesel preparation by lipase catalyzed transesterification of Jatropha oil. Energy Fuels 18: 154–159.

      26 26 Dhawane, S.H., Kumar, T., and Halder, G. (2016). Parametric effects and optimization on synthesis of iron (II) doped carbonaceous catalyst for the production of biodiesel. Energy Convers. Manag. 122: 310–320.

      27 27 Jain, S., Sharma, M.P., and Rajvanshi, S. (2011). Acid base catalyzed transesterification kinetics of waste cooking oil. Fuel Process. Technol. 92: 32–38.

      28 28 Nelson, L.A., Foglia, T.A., and Marmer, W.N. (1996). Lipase‐catalyzed production of biodiesel. J. Am. Oil Chem. Soc. 73: 1191–1195.

      29 29 Lee, S., Posarac, D., and Ellis, N. (2011). Process simulation and economic analysis of biodiesel production processes using fresh and waste vegetable oil and supercritical methanol. Chem. Eng. Res. Des. 89: 2626–2642.

      30 30 Shimada, Y., Watanabe, Y., Samukawa, T., and Sugihara, A. (1999). Conversion of vegetable oil to biodiesel using immobilized Candida antarctica lipase. J. Am. Oil Chem. Soc. 76 (7): 789–793.

      31 31 Jaeger, K.E. and Eggert, T. (2002). Lipases for biotechnology. Curr. Opin. Biotech. 3 (4): 390–397.

      32 32 Bora, D.K., Saha, R., Saikia, M. et al. (2014). Biofuel production from Mesua ferrea L. seed oil. Int. J. Eng. Tech. Res. 2 (9): 397–402. ISSN: 2321‐0869.

      33 33 Lin, Y.C., Chen, S.C., Chen, C.E. et al. (2014). Rapid Jatropha‐biodiesel production assisted by a microwave system and a sodium amide catalyst. Fuel 135: 435–442.

      34 34 Phuenduang, S., Chatsirisook, P., Simasatitkul, L. et al. (2012). Heat‐integrated reactive distillation for biodiesel production from Jatropha oil. Proceedings 11th International Symposium on Process Systems Engineering, Singapore (15–19 July 2012).

      35 35 Saka, S. and Kusdiana, D. (2001). Biodiesel fuel from rapeseed oil as prepared in supercritical methanol. Fuel 80: 225–231.

      36 36 Farobie, O. and Matsumura, Y. (2017). State of the art of biodiesel production under supercritical conditions. Prog. Energy Combust. Sci. 63: 173–203.

      37 37 Gonzalez, S.L., Sychoski, M.M., Navarro‐Díaz, H.J. et al. (2013). Continuous catalyst‐free production of biodiesel through transesterification of soybean fried oil in supercritical methanol and ethanol. Energy Fuels 27: 5253–5259. https://doi.org/10.1021/ef400869y.

      38 38 Varma, M.N. and Madras, G. (2007). Synthesis of biodiesel from castor oil and linseed oil in supercritical fluids. Ind. Eng. Chem. Res. 46: 1–6.

      39 39 Gharat, N. and Rathod, V.K. (2013). Ultrasound assisted enzyme catalyzed transesterification of waste cooking oil with dimethyl carbonate. Ultrason. Sonochem. 20 (3): 900–905.

      40 40 Adewale, P., Dumont, M.J., and Ngadi, M. (2016). Enzyme‐catalyzed synthesis and kinetics of ultrasonic‐assisted methanolysis of waste lard for biodiesel production. Chem. Eng. J. 284: 158–165.

      41 41 Adewale, P., Dumont, M.J., and Ngadi, M. (2015). Enzyme catalyzed synthesis and kinetics of ultrasonic‐assisted biodiesel production from waste tallow. Ultrason. Sonochem. 27: 1–9.

      42 42 Chen, K.S., Lin, Y.C., Hsu, K.H., and Wang, H.K. (2012). Improving biodiesel yields from waste cooking oil by using sodium methoxide and a microwave heating system. Energy 38: 151–156.

      43 43 Tangy, A., Pulidindi, I.N., Perkas, N., and Gedanken, A. (2017). Continuous flow through a microwave oven for the large‐scale production of biodiesel from waste cooking oil. Biores. Technol. 224: 333–341.

      44 44 Milano, J., Ong, H.C., Masjuki, H.H. et al. (2018). Optimization of biodiesel production by microwave irradiation‐assisted transesterification for waste cooking oil – Calophyllum inophyllum oil via response surface methodology. Energy Convers. Manag. 158: 400–415.

      45 45 Patil, P.D., Gude, V.G., Reddy, H.K. et al. (2012). Biodiesel production from waste cooking oil using sulfuric acid and microwave irradiation processes. J. Environ. Prot. 3: 107–113.

      46 46 Imahara, H., Xin, J., and Saka, S. (2009). Effect of CO2/N2 addition to supercritical methanol on reactivities and fuel qualities in biodiesel production. Fuel 88: 1329–1332.

      47 47 Demirbas, A. (2007). Biodiesel from sunflower oil in supercritical methanol with calcium oxide. Energy Convers. Manag. 48: 937–941.

      48 48 Kusdiana, D. and Saka, S. (2004). Two‐step preparation for catalyst‐free biodiesel fuel production: hydrolysis and methyl esterification. Appl. Biochem. Biotech. 113 (116): 781–791.

      49 49 Mandal, V., Mohan, Y., and Hemalatha, S. (2007). Microwave‐assisted extraction‐an innovative and promising extraction tool for medicinal plant research. Pharmaco. Rev. 1 (1): 7–18.

      50 50 Farhat, A., Ginies, C., Romdhane, M., and Chemat, F. (2009). Eco‐friendly and cleaner process for isolation of essential oil using microwave energy: experimental and theoretical study. J. Chromato. A 1216 (26): 5077–5085.

      51 51 Karim Assami, D.P. (2012). Ultrasound‐induced intensification and selective extraction of essential oil from Carum carvi L. seeds. Chem. Eng. Process. Process Intensif. 62: 99–105.

      52 52 Bhaskaracharya, R.K., Kentish, S., and Ashokkumar, M. (2009). Selected applications of ultrasonics in food processing. Food Eng. Rev. 1: 31–49.

      53 53 Glisic, S.B., Pajnik, J.M., and Orlovic, A.M. (2016). Process and techno‐economic