Джордан Элленберг

Форма реальности


Скачать книгу

тывает эго ребенка в грязь безо всякой причины – просто из низости. Иногда немного счастливее: переживание внезапного озарения в детской голове, к которому взрослые хотели бы вернуться, но так и не смогли. (На самом деле это тоже печально.)

      Часто эти истории связаны с геометрией. Похоже, она выделяется в воспоминаниях о старшей школе, как странная высокая нота в припеве. Одни ненавидят ее, говоря, что именно после изучения геометрии математика утратила для них смысл. Другие утверждают, что геометрия – единственная часть математики, которая им понятна. Геометрия – это кинза математики. Мало кто к ней относится нейтрально.

      Что же выделяет геометрию? Каким-то образом она первична и встроена в наши тела. С криком покинув материнскую утробу, мы тут же начинаем изучать окружающий мир, каков он на самом деле и как выглядит. Я не из тех людей, которые станут уверять, что все важное в вашей внутренней жизни восходит к потребностям живших в саванне косматых охотников-собирателей, однако вряд ли можно сомневаться в том, что эти люди должны были развить понимание форм, расстояний и мест, вероятно, еще до того, как у них появились слова для их названий. Когда южноамериканские шаманы[1] (и их неюжноамериканские подражатели) совершают свой ритуал, первое, что происходит (ну хорошо, первое, что происходит после неконтролируемой рвоты), – это восприятие чистых геометрических форм: повторяющиеся двумерные узоры вроде решеток в классической мечети или трехмерное изображение шестиугольных ячеек, собранных в колеблющиеся соты. Геометрия существует даже тогда, когда остальная часть нашего мыслящего разума отключена.

      Скажу честно: сначала я был к геометрии равнодушен. Что, наверное, странно, если учесть, что сейчас я математик, а заниматься геометрией – моя непосредственная работа!

      Все было иначе, когда я был членом школьной команды по математике. Команда называлась «Углы ада»[2], на турниры мы приходили в одинаковых черных футболках и обязательно приносили магнитофон, который играл песню Hip to Be Square[3] группы Huey Lewis and the News. При этом мои товарищи прекрасно знали, что у меня проблемы с задачками типа «показать, что угол APQ равен углу CDF» или что-то в этом роде. Это не значит, что я их вообще не решал! Я их решал, но самым громоздким из возможных способов, то есть вводил координаты для точек, а затем исписывал целые страницы алгебраическими вычислениями, находя площади треугольников и длины отрезков. Все что угодно – лишь бы не так, как принято в геометрии. Иногда я решал задачу правильно, иногда – неправильно. Но каждый раз решение было уродливым.

      Если и существует такая вещь, как «геометричность по природе», то я – ее полная противоположность. Можете попробовать пройти с ребенком[4] геометрический тест. Вы показываете ему последовательно пары картинок: преимущественно одинаковой формы, но примерно в каждой третьей паре правая фигура перевернута. Дети гораздо дольше рассматривают перевернутые формы. Они осознают: что-то происходит; и их исследующие мир умы тянутся к новому. Дошкольники, дольше разглядывающие перевернутые фигуры, как правило, получают более высокие баллы и в тестах по математике на пространственное мышление. Они быстрее и точнее представляют себе формы и их внешний вид после поворотов или склеивания. Ну а я? У меня таких способностей практически нет. Знаете маленькую картинку на терминалах бензоколонок, которая показывает, как правильно ориентировать кредитную карту? Для меня она бесполезна. Перевести этот плоский рисунок в трехмерное действие – за пределами моих умственных способностей. Каждый раз мне приходится проверять все варианты – магнитная полоса вверху справа, магнитная полоса вверху слева, магнитная полоса внизу справа, магнитная полоса внизу слева, – пока терминал не согласится прочитать мою карту и продать мне немного бензина.

      И все же в целом считается, что геометрия лежит в основе того, что требуется для реального понимания мира. Кэтрин Джонсон, математик из НАСА, ставшая широко известной после книги и фильма «Скрытые фигуры», описала свой успех в отделе летных исследований так: «Все парни имели степени[5] по математике, но забыли всю геометрию, которую знали… А я все еще ее помнила».

Могучее очарование

      Уильям Вордсворт в длинной, во многом автобиографической поэме «Прелюдия, или Становление сознания поэта» рассказывает несколько неправдоподобную историю о жертве кораблекрушения – выброшенном на берег человеке, у которого не было ничего, кроме экземпляра «Начал» Евклида (книги с аксиомами и теоремами, положившей начало геометрии как предмету около двух с половиной тысяч лет назад). Это было удачей для потерпевшего кораблекрушение: несмотря на подавленность и голод, он утешался, пробираясь через рассуждения Евклида и вычерчивая рисунки палкой на песке. «Вот что значит быть молодым, чувствительным, поэтичным!» – пишет Вордсворт в зрелом возрасте. Или, говоря словами самого поэта:

      …Огромна абстракций чистых власть

      над тем умом, что сам в себе не властен

      и влеком толпою образов…