Макс Базерман

Как принять правильное управленческое решение


Скачать книгу

одного конкретного достоинства в прикупе. – Прим. ред.

iVBORw0KGgoAAAANSUhEUgAAAtAAAAQ+CAYAAAD2yQhUAAAABGdBTUEAALGPC/xhBQAAAAlwSFlzAAAOwwAADsMBx2+oZAAAf49JREFUeF7t/Yu3LWlWF2h/f24VV61CW7RKGtEsLyVWqS1N4gWlkPZClv2JaPJ10Wi27UBMPmiQtBrRkcqlIOUikNxh95inz5vMenOuiHfGir332vs8zxhznHPWipjxxmVH/Fbs2Pv8f+4AAIBlAjQAADQI0AAA0CBAAwBAgwANAAANAjQAADQI0AAA0CBAAwBAgwANAAANAjQAADQI0AAA0CBAAwBAgwANAAANAjQAADQI0AAA0CBAAwBAgwANAAANAjQAADQI0AAA0CBAAwBAgwANAAANAjQAADQI0AAA0CBAAwBAgwANAAANAjQAADQI0AAA0CBAAwBAgwANAAANAjQAADQI0AAA0CBAAwBAgwANAAANAjQAADQI0AAA0CBAAwBAgwANAAANAjQAADQI0AAA0CBAAwBAgwANAAANAjQAADQI0AAA0CBAAwBAgwANAAANAjQAADQI0AAA0CBAAwBAgwANAAANAjQAADQI0MCHvPnmm3dvfP6Nu0988hN3H/noR76s4rU9Mf8838c+/rG7z33n516899Zbb72c8ml7//33X6xPVKzfvM7jvVGvf9vrX7ZN33nnnZedAHhKBGjgogiIORCOevfdd19OUXvtU699aJ4I5M/ZZz77mQ+t8yXxQSLej1ANwNMjQAObIujNd1e3gl+E7rjTmqffm+c56AToEHeiBWiAp0mABjZFEBx3TEfFHeZL4vGMCIZ5+igB+svF9njud+UBnisBGtgUQTBC8RwO33vvvZdTfLm4+xzvzdML0F8utlHMA8DTI0ADmyIIVs9CXwrEIxSuTv9cdAN0ePvtt1/+DYCnRIAGNo0gOD/XXN09jd8qMR5LyNNGCdAAPBcCNLBpBMHqMY64M51FeB6/oWOeVoAG4LkQoIFNIwhWj3HMv885/3DhPO1WgI5HGeLudVRMF7/1IwJp/PDi/LuS4/35hxqj4g55vJd/xV6MeUwbv/Wi+r3LsQ4xb4x99I5/V9NuOTNAx7jH9ojxbW2PIT68jOnj72NdYr7497yvZrHMmCcvJ/6MuvS8e4jpon9Ml3uMbV7NP8Y4/3aXajnRc54uesZystVjaIxx/o5KVEw/+ub1yDWOM+DVJkADmyI0DHPoiH8PEX4irAx5uqgqdESYiZAy/17pCFh53hyAhvz+pWliPNE7KqbJ/wlMLHv8vuoIW/HvYbzeeUa5ClvxWlT0H4EutsNWII2xxnR5PDGO3Lda17H8eTvnfRbrVS07ljn+g5f8IWgsN8Y+tsUIqPOxMD6AjHGPbT6qCvBjzKMiVM/mYyEqu89jKP49TwMQBGhgUw4NVZgZgSnCUw6c83RzsAvxWrwXwSmHl+iZ542ANMvvR83hJ3qMQD+miSAY4r0RGKPm4BbTxes5cO+Zw2DUMMaS36u2R4g+sfwcRkOet9oe8VrVcw6y+UNPiEA91jcq98j7IabJ46nCZX4/zOs8h9wYc95u1faOfZOnicru8xiq1hEgCNDAphwa5lASNe4sRkDJAWqergp3ORiNcDvkeaNm8/tz+InljdciXEX/MdY52F0KXvOYtswhL2qWQ3tUtU0uvZ9fj5pFMJ4D7LA173wned6O+b2x/cJKuJynmUNs/Hv+UJY/hEW43wvQ93kMrawj8GoSoIFNc2iYA1eE0Qhu853NPE1UFRbzown50YGQ542aze/P4WcOa8N8RzZqDp4x1hHuVs0hL2o2h8Wo+ZGKCIzjvbxOeZ6oWbV9hzxf3s6x7Pxe1Lwd83vjjn5YCZf5w8iovL4j9EfwHe/nZcQ6xfRbAfo+j6GVdQReTQI0sGkODXMIHHd25wCXp4m6FPAi0Mb8c4id55/N7+fwEyEs38nMYhzzvGdYCdBVYI3APIvtsRVko1bNITZvl2pbxGuXKs+7Gi7naWLdhugZ5u8IjGNhhOmtAB3u4xgKAjRwiQANbJpDwxzIouLRhPlO6jzNCEtboneElph2nn82vx9hK+aLu5qXwnNYCbpHrPadp9l7zjrC4cr2GGI7xDaIeSKcx99jbPHveR/Fe6t9Z0cDdIxjGH+fe0UYHusd9gJ0dsYxNGoO9lEAQYAGNlWhYQ5e87fOQ34/aoShSgSe0TOmq0L6bH4/eoQReiJ0jdeyWwvQl6aLEBnhOrZtdef6khGaYzvG3+PDRPSJ7TJvj2u2RfRamXeeJh8H+e/5+fBY5xj7uKO8EqDPPIaG1XUEXj0CNLCpCg0R7nKoqB5DyO9H5bCUxbzVNHneqNn8fg4/OXDlRwZCXt6oMxwN0PMd6Ah+udcIkXmeqI48X94e19xhPRqg836aw3SeLh9TewH6Po6hIEADlwjQwKYqNMx39+Lb7bP8flQVoOeAkuXX5/fC/H4OP3PAz+OLO7L5vag5OB2xEqCrO8lx1zTLQTJ6DnmeqI48X/5NFfN2ipof87hkJVzGdt+aJq/fvG1y0N8K0Pd1DIWVdQReTQI0sOlSaBjfLr/0q95y6IiqAvToMSrLr8/vhfn9Ofzk93JQC/lxgajqDnoYd39XrAToKrDO486/kWI1QEf4nPtk87xj2li/eVtU+2nI762Ey/nDStzxzub9MrbhfEzN2za7z2NoZR2BV5MADWy6FBpGGJxD0ZBDR1QVzOZgNAJM/DkHu+HSIw1z+JmDVb6zOt8ZjcA230WPf2+Fydm8LlGzeZpq2+X3x93pre0RYxyvVc+iz98tiHXNHwzmkDi/P8T+ztt4ni9qni8/WlH1je2RXTqmtgL0fR5D1ToCBAEauCiCRoSGKlCNb7nnb7VnOXREVXd55zuyEbIiEMWdyxy+oiIoRo2Qk9+LmsNPDpZRcyiL6WN54/34++gf47p0V/qSOchFDbH9Yvn5vUv95+mib4zr0vaIyttxXs94f7wX61j9hpJ5W0TwHNPFfh7LyGKeMf2omG6IdR4948/5A0qIdcvGPPO+nLdtdp/HULWOAEGABr5MhJgIGRE+IojkGndEh5huhOtxxzYq7oTOwWMEmwh4Mc0Qfx93CmO+Edyibywv3hvzjTA3h8yomCbeG3ea57vMUbFOOUCOdc3jjb/PYfGSMZ75bnfuFe9Fje2Xx1iJMcU4R/iMv4/Xq+0xRNiL98d2HttpjCHWaeyrytgWMW/eH/NyhipcxnQx3jGOmD96zsuN18Y6xt/z9o5/D/F6/Htsi1Expjxd/H31GBrHafw9ph/ba7w/+o5pxntR0Sf65WUDryYBGoA2d2eBV5kADUCbAA28ygRoANoEaOBVJkAD0CZAA68yARqANgEaeJUJ0AC0CdDAq0yABqBNgAZeZQI0AMsiOMfvQY7fhzwH6PE7kmMagOdMgAYAgAYBGgAAGgRoAABoEKABAKBBgAYAgAYBGgAAGgRoAABoEKABAKBBgAYAgAYBGgAAGgRo4Nl677337j7z2c+8qDc+/8YHf5/rYx//2Ms5bl/8V9mxLp/45Cc+9F9px2t7Yv55vlj/z33n516899Zbb72cEoBLBGjglRFhOQJi/DmHyKfm/fff/9A6RL377rsvp6i99qnXPjRPBHIA1gnQwCsh7kaPO83PIUCHGHesU16PuIt8SYTu17/t9S+bfm8eAD5MgAZeCRESR1B8TgE6Hr3I6xF3mC+Ju++xDfL0UQI0QI8ADbwS4vnguAsdnlOAjlA8r8tYz1ncfY735ukFaIAeARp49iJkRngcnlOArp6FvhSIY73D6vQA1ARo4NmL4PjOO++8/NfzCtBhfq55BOUs1n/8sGCeNkqABugRoIFnLR5ZmH+923ML0NVjHHFnOovwPH5DxzytAA3QI0ADz1r8kF0EzOxIgI4eMV8E0aj4ewTPOajGv+P16rddjHlC/FmNI+ZbDbQxfage45jXOf9w4TxtXl7MF+s3/3aP+BAS0407+fHnWIexXvku/7jjHdt/bJOxvtErXr/0rDbArROggWcrgluEtTnkVsH1krhrGz1imgh9QwTCeC2CZg6OWe4fNU8X/56n6cjTz4E9P/MdQTWPPU8XFesyG+s36tJv94jpon+sS/x9HkfMF6+PfRDbM78/B32Ap0CABp6tCGc5OA6rATrCXr4Tm/+TkvmubxWi8/vVNGcG6FjXudcIrRFg33777Rd/D/N08f5sXr+o6o7xvH2rdZo/wMQ8+f28XQGeAgEaeLbiznEV+lYCdIS+cec5avwnLFmeP96fg2J+P+o+A3QVeMfd3VjfPLZ5uipAhznoxiMZWWzbed6VdZqnifEBPCUCNPAsRUi7FMxWAnQEw/x+1WvuM4fJ/F7UfQboMD8+EQE4gnN+nCPkaaIuBeh5fPGBIov55g8NK+tUhf3qgw7ArRKggWcpwuOl52tXAvQ8zUqAnqfJ70Xdd4CeH+OIu+Lx2l6wvxSgQ74LH5UfBZnvSIfVdZqnubSvAG6RAA08O3E3c75bmq0E6Pn9lQAdlc3vRaiPsDpqfkQiqmOevrqzWz3GMk+zFaDjvTxtjDnEc8tV6D0aoLfGAHBrBGjg2RkB9ZLHCtD3fQc6VL8FY5bfj9raVlUoj9fi7vP8+EYQoIFXgQANPDvVXddsJUDP06wE6Pmud34v6iEC9PwYR/WYRX4/ai+8znfKq8dChqMBet42ALdMgAaelQh34zGDS1YCdATE/H71WzjmPnNYze9FPUSAnu8YV78iLr8ftReg53HGtsjPQmcr6xRj2psG4JYJ0MCzEqF2727mSoCOIBpBcWua/F5Mu/es8UME6DAe46hCf8jLi1p5fCL/MOGlvmFlnSJ85/f3PvAA3BoBGng2IsBe+h/zspUAHeJOaQ7R893cPH/1A3X5/aiHCtDjMY5LwTQvL2olQOc78luBt1qn+VnpuFM/3ovtWz1LDXDLBGjg2YhgVwXZ2WqADhGax93XHBxHSI0AeOlxhtw/6swAPR7VqMJnfJCI9y5ti7y8qOo56dlYXlT1WMhQrVMO6NFnfCiJP7d6AdwqARp4siKsRRgeFaEswmAEtq3KjyOMGj0uhcmYL96PED3+Hn/OATb+Ha/HdNE3QuLoPeYNY5rxXlSMKx6/GNPMRu8YY54vav7PUmK6MbYIqfHvqLhDP6/7GGMeXyXen39QclYF6Aj0MeYYYywrxpDHB/DUCNDAkzbuZo6gdsQIu1Erd7BfVXGnfe9u9TV31QGeCgEaeNIi0F0b1OJuaMwfYdxd0cviw8XehxQBGngVCNDAkzae970mqI0AHXeiuWzr8Y5BgAZeBQI08OTF87vXBLURoP1A22XxQUWABvh/CdDAkzd+I8ZREQz3fjjuVRKPscQP/EWNR1piG6083iJAA68CARp48iLYrfz+50vGb6ng/zXuyEfFYy3xw4Orj7cI0MCrQIAG4MvkAB3V+eFKARp4FQjQAHyZCMvjufL4c+XZ8AjOEbzjsY85QMdr8V5MA/AcCNAAANAgQAMAQIMADQAADQI0AAA0CNAAANAgQAMAQIMADQAADQI0AAA0CNAAANAgQAMAQIMADQAADQI0AAA0CNAAANAgQAMAQIMADQAADQI0AAA0CNAAANAgQAMAQIMADQAADQI0AAA0CNAAANAgQAMAQIMADQAADQI0AAA0CNAAANAgQAMAQIMADQAADQI0AAA0CNAAANAgQAMAQIMADQAADQI0AAA0CNAAANAgQAMAQIMADQAADQI0AAA0CNAAANAgQAMAQIMADQAADQI0AAA0CNAAANAgQAMAQIMADQAADQI0AAA0CNAAANAgQAMAQIMADQAADQI0AAA0CNAAANAgQAMAQIMADQAADQI0AAA0CNAAANAgQAMAQIMADQAADQI0AAA0CNAAANAgQAMAQIMADQAADQI0AAA0CNAAANAgQAMAQIMADQAADQI0AAA0CNAAANAgQAMAQIMADQAADQI0AAA0CNAAANAgQAMAQIMADQAADQI0AAA0CNAAANAgQAMAQIMADQAADQI0AAA0CNAAANAgQAMAQIMADQAADQI0AAA0CNAAANAgQAMAQIMADQAADQI0AAA0CNAAANAgQAMAQIMADQAADQI0AAA0CNAAANAgQAMAQIMADQAADQI0AAA0CNAAANAgQAMAQIMADQAADQI0AAA0CNAAANAgQAMAQIMADQAADQI0AAA0CNAAANAgQAMAQIMADQAADQI0AAA0CNAAANAgQAMAQIMADQAADQI0AAA0CNAAANAgQAMAQIMADQAADQI0AAA0CNAAANAgQAMAQIMADQAADQI0AAA0CNAAANAgQAMAQIMADQAADQI0AAA0CNAAANAgQAMAQIMADQAADQI0AAA0CNAAANAgQAMAQIMADQAADQI0AAA0CNAAANAgQAMAQIMADQAADQI0AAA0CNAAANAgQAMAQIMADQAADQI0AAA0CNAAANAgQAMAQIMADQAADQI0AAA0CNAAANAgQAMAQIMADQAADQI0AAA0CNAAANAgQAMAQIMADQAADQI0AAA0CNAAANAgQAMAQIMADQAADQI0AAA0CNAAANAgQHOz3nnnnbuPfPQjF+tjH//Y3Wufeq18b9Tr3/b6y27b3nrrrbvPfPYzH8wXfT/3nZ+7e++9915OcZ43Pv/Gi3U703PbVu+///6LdYo/uSyOpbEPYp8crVls92q6bo1j6oxxVsdn9K2m7dZ9fJ0Dz5sAzc2Ki/ibb775ouLi+YlPfuKD0LZVcUEc87399tsvu10W4S/miz9jnph/9IrgudJjVaxT9Ixlnem5bavRO2p1Xe6zxlhivUfYijFW015TI2Cu7o8sPnDEvq/65or9FP1j+lGV/P7qusb4Y9yXPvjE69FvdZwRkOMD2xjHLPZFHmPMU/XKFdNEz3ffffdll75Yj1jPEeBjvatlzRXLHsdSrmrafI6I9aumyRVfJ1Xv1bq0DvH6sDKOUaPvvE/OOkfAYxOgeTLiYplPxFXFhbEjTuYxX1x8h7g45p5xAbgUCLpifKPvWT0rz2FbZWPZWzWHwpWq+uSKALC6PishM7bPHCDi37GcS9NH3842rfrkyvuvY2X9YpuumI+bqo6Mc2WMEXqPiq+r8SGyqtiPsT9HOI/1jH+vBOyt/Vwdq3FsjA+y+Ziupp2rmifOB9Ev+s7TX7KyvePDUuf4hadCgOZJqU7QueJC0BEXtrhzM8SJvrpAdsPmJTkondXzkjz+qm59W83m5czVXZ9Q9cnVWZfYHlWPXFv9toJZbPfVO6bV/LmObKcQ81X9cnVU8+c6Ms6VD45H1z/CYhUuR23t25UPgFvmoBr/3gqledqqtrZB9J2/Q7AlT1fV0e0Nt06A5kmpTtC5OifrcbGNi9Fw6U5gnuao+eKevzV6H/KyqrrlbVWplpXryIW66pOr27PqkWurXwSXrcdVIrythOhq3lxHtlOIgFj1y9VRzZ/r6DirXrmO9N36cBO1d8zHMqv5cm2J/mO6la+v3LeqlW2QQ/SW3Leqo/sRbp0AzZNSnaBzdU7W46IU4XCY+42av+1+RL4IjrrmOcw987LmuuVtVamWlevIhbrqk6vbs+qRa6/f+GG7S7XyoauaL9eR7RThfuvu66iOav5cR8YZql65un33Pjjk78pcEsus5s21ZXz9xYfWFXPvuVa2Qf7Av3Weyn2rOrof4dYJ0Dwp1Qk6V+dkHWFkDiTVXdUIDlvfLl1V3V285nnMPfOy5rrlbVWZlzXXkQt11SdXt2fVI9dev3i/mi/X3mMl1Ty5jmyn6sNfVR3V/LmOjDNUvXJ1++59cFj5Gl7Zr1vG19revh/m3nOtboNx531r+rn3XEf3I9w6AZonpTpB51o9WUfIi+kjGGTxev52bVy4zrhLHD1Gz1xxcb4v1fJy3eq2umQs51IduVBXfXJ1e1Y9cu31G9t6q+Jb61uqeXJ11ynGFMfp3mMMUR3V/LmO7M9Q9crV6bvy7PJKv5immjfXlhGgY1+smHvPtboNxvrPX/vZ3Huuo/sRbp0AzZNSnaBzrZ6sx7dlH+rkvhU+Vu8qdVXLynWr2+qSefxzHRlf1SdXt2fVI9dKv2q+XHuPDFTz5OquUxy7scyYr+qXq6OaP9eR/RmqXrk6fVfuvOfHmi65dttFgF55fGeo+ufqbIP48CRAw4cJ0Dwp1Qk61+rJegTah7L1beC9O4pHVcvKdavb6pJ5/HMduVBXfXJ1e1Y9cq30q+aba0s1fa7OOo3nYGOeqLnXXB3V/Lm6236oeuXq9B13frdqxbXbLt7vPO41956rsw3i/LR1jqr65zq6H+HWCdA8KdUJOtfqyToC7X0F19m4g7tVK3exuqrl5LrFbbWlWodcRy7UVZ9c3Z5Vj1wr/ar55tpSTZ+rs04RIKNCzFf1y9VRzZ/ryP4MVa9c3fWveuRace22i/c7P5w7956rsw3i/DWOgUrVP9fR/Qi3ToDmSalO0LlWTtbjub77enRiFuFzHudcW98iPapaTq5b3FZb5vHPdeRCXfXJ1e1Z9ci10q+aL9dWmAnVPLlW1ymmi+nHc+3j31vVUc2fq7vth6pXrk7fWwnQ8V2g1eefQ9U/V3fb+i0c8GECNE9KdYLOtXKyjkAbd1UfwvgW+N6vJ1v5VVhd1XJy3dq22lOtQ64jF+qqT65uz6pHrr1+Kz9EuPet/GqeXKvrFM/cRnAbYr6qX66Oav5cR/ZnqHrl6vRdeQZ6Jdieve32VP1zHd22lap/rjOXBbdEgOZJqU7QufZO1uO3YdzHHd/KuABHkI5Aksc6V+dbtCuqZeS6tW21Zx7/XEcu1FWfXN2eVY9ce/3i/Wq+XHs9qnlyraxTfMchPjjlR4tWxtZRzZ9rZZyVqleuTt+VdV7pd/a221P1z3V021aq/rnOXBbcEgGaJ6U6QefaO1nHt2QjGHS+HXqNuLM8nh/eu5uV7/adoVpGrlvbVnuqdch15EJd9cnV7Vn1yLXXb+8Y2Xt8I1Tz5VpZpzhu5w9OMV/VL1dHNX+uI/szVL1ydfvGtqj6jHqI3wPdVfXPdXTbVqr+uc5cFtwSAZonpTpB59o6WY9w8lDP8447uGN5K9+ePzOsVv1z3dK2WjGPf64jF+qqT65uz6pHrr1+W2EtPsxsPYs6VPPm2htD7PsYx3wsxnxVv1wd1fy5juzPUPXK1e07fg7gUsW22nP2tttT9c91dNtWqv65zlwW3BIBmielOkHnunSyHoGw86ugrhV3lOc7uHs/UDjf9btG1T/XLW2rFfP45zpyoa765Or2rHrk2uo3tvulWv0wU82ba2sMcazGMVstK+ar+uXqqObPdWR/hqpXriN9Y3tUvUbtfffo7G23p+qf6+i2rVT9c219KIzvqETFuSY+qJx5AwHumwDNk1KdhHNFCImLw6j4d5zAL4WC+xTLnC+sexfizn+WsKfqn+uWttWKah1yxTp0VX1ydXtWPXJd6rcVnmN/dMZR9ci11SuCzKVjMOar+uXqqObPNR+fq1X1yhXTHBEBbysMxofjS7+OcmVcZ6r65zq6DSpV/1xxDoxtF8uMP2O/bv08SEx/H7/WE84mQPOkVCfcvYoAEiftlW9/n2UE5flCNe7wzWPMddY4q9579RjbalU13lxHQkHVJ1e3Z9UjV+4X2ziOk7gDV0079kX3rlzVK9eldRq/MebS+/H63Guujmr+h6juPp3FPhu/nabqH+/N4T/+