Бен Орлин

Время переменных. Математический анализ в безумном мире


Скачать книгу

ользованию без разрешения правообладателя. В частности, запрещено такое использование, в результате которого электронная книга, ее часть, фрагмент или элемент станут доступными ограниченному или неопределенному кругу лиц, в том числе посредством сети интернет, независимо от того, будет предоставляться доступ за плату или безвозмездно.

      Копирование, воспроизведение и иное использование электронной книги, ее частей, фрагментов и элементов, выходящее за пределы частного использования в личных (некоммерческих) целях, без согласия правообладателя является незаконным и влечет уголовную, административную и гражданскую ответственность.

      ВСЕМ СТУДЕНТАМ И ПРЕПОДАВАТЕЛЯМ ТЕХ ШКОЛ, КОТОРЫЕ СТАЛИ МНЕ ДОМОМ

      Последовало молчание. Через какое-то время он спросил:

      – Как ты пришла к этим мыслям о Боге?

      – Я искала Бога, – ответила я. – Мне не нужна была мифология, мистика или магия. Я не знала, существует ли Бог на самом деле, но хотела узнать. Бог должен быть силой, которую не может отрицать никто и ничто.

      – Чтобы совершать изменения?

      – Да, изменения.

      – Но это не Бог. Это не человек, не интеллект и даже не вещь. Это просто… Я даже не знаю. Идея.

      Я улыбнулась. Было ли это критическое замечание таким ужасным?

ОКТАВИЯ БАТЛЕР.ПРИТЧА О СЕЯТЕЛЕ

      Введение

      Какой-то миллион дней назад философ Парменид спрашивал: «Что это – несозданное и неразрушимое, единственное, завершенное, неподвижное и бесконечное?» Это философия чистой воды. Парменид не признавал никакого разделения, никаких отличий, ни будущего, ни прошлого. «У Бытия нет ни прошлого, ни будущего, – объяснял он, – оно есть чистое настоящее, непрерывное и непрекращающееся». Для Парменида Вселенная была чем-то вроде транспортного потока в Лос-Анджелесе: вечной, единственной в своем роде и неизменной.

      Миллион дней спустя эта идея продолжает выглядеть очень глупой.

      Да ладно тебе, Парменид! Ты можешь убаюкивать нас стихами и засыпать прилагательным, но мы не так легковерны. Миллион дней назад не было ни буддистов, ни христиан, ни мусульман, потому что ни Будда, ни Иисус, ни Магомет еще не родились. Миллион дней назад итальянцы не ели томатный соус, потому что современной Италии[1] не существовало, а ближайшее место, где росли помидоры, было в десяти тысячах километров. Миллион дней назад по Земле ходило 50 или 100 миллионов человек; сегодня такое количество людей каждый год посещает тематические парки Диснея.

      На самом деле, Парменид, миллион дней назад теми же самыми, что и сегодня, были только две вещи: (1) вездесущность изменений и (2) глубокомысленная и безнадежная неправильность твоей философии.

      Парменид в последний раз упоминается в этой книге (хотя его преданный ученик Зенон еще появится позже). «Счастливое избавление от одетых в тоги неудачников», – сказал бы я. А теперь мы перенесемся через время, минуя более мудрого современника Парменида, Гераклита («нельзя войти в одну реку дважды»), чтобы оказаться в конце XVII в., каких-то 120 000 или 130 000 дней назад. Именно тогда ученый по имени Исаак Ньютон и энциклопедист Готфрид Лейбниц дали жизнь главному действующему лицу этой книги. Это был новый математический язык, язык изменений, попытка количественно оценить те движения и процессы, которые постоянно происходят вокруг нас на Земле.

      Сегодня мы называем такую математику «математическим анализом».

      Первый инструмент математического анализа – производная. Это мгновенный показатель изменения, демонстрирующий нам, как что-то развивается в определенный момент времени. Возьмите, к примеру, точную скорость яблока в то мгновение, когда оно ударило Ньютона по макушке. За секунду до этого фрукт двигался чуть-чуть медленнее, а секундой позже он направился совершенно в другую сторону, как и история всей физики. Но производную не заботит, что было секундой раньше или секундой позже. Она указывает только на этот момент, на бесконечно малый отрезок времени.

      Второй инструмент математического анализа – интеграл. Это сумма бесконечных кусочков времени, каждый из которых чрезвычайно мал. Интеграл показывает, как можно объединить ряд дисков, каждый из которых по толщине напоминает самую тонкую пленку, так, чтобы создать твердое тело – сферу. Или как группа людей, крошечных и ничтожных, как атомы, может собраться вместе и создать целую цивилизацию. Или как ряд моментов, каждый из которых сам по себе продолжается ноль секунд, может составить час, столетие, вечность.

      Каждый интеграл говорит о всей совокупности целиком, о галактических масштабах, которые каким-то образом могут попасть в панорамные объективы нашей математики.

      Производная и интеграл имеют заслуженную репутацию как специализированные математические инструменты. Но я считаю, что они могут дать нам больше. Мы с вами словно крошечные