Alexander Findlay

The Phase Rule and Its Applications


Скачать книгу

tion>

       Alexander Findlay

      The Phase Rule and Its Applications

      Published by Good Press, 2021

       [email protected]

      EAN 4057664595713

       PREFACE

       THE PHASE RULE

       CHAPTER I

       CHAPTER II

       CHAPTER III

       CHAPTER IV

       CHAPTER V

       CHAPTER VI

       CHAPTER VII

       CHAPTER VIII

       CHAPTER IX

       CHAPTER X

       CHAPTER XI

       CHAPTER XII

       CHAPTER XIII

       CHAPTER XIV

       CHAPTER XV

       CHAPTER XVI

       CHAPTER XVII

       CHAPTER XVIII

       APPENDIX

       NAME INDEX

       SUBJECT INDEX

       Table of Contents

      Although we are indebted to the late Professor Willard Gibbs for the first enunciation of the Phase Rule, it was not till 1887 that its practical applicability to the study of Chemical Equilibria was made apparent. In that year Roozeboom disclosed the great generalization, which for upwards of ten years had remained hidden and unknown save to a very few, by stripping from it the garb of abstract Mathematics in which it had been clothed by its first discoverer. The Phase Rule was thus made generally accessible; and its adoption by Roozeboom as the basis of classification of the different cases of chemical equilibrium then known established its value, not only as a means of co-ordinating the large number of isolated cases of equilibrium and of giving a deeper insight into the relationships existing between the different systems, but also as a guide in the investigation of unknown systems.

      While the revelation of the principle embedded in the Phase Rule is primarily due to Roozeboom, it should not be forgotten that, some years previously, van't Hoff, in ignorance of the work of Willard Gibbs, had enunciated his "law of the incompatibility of condensed systems," which in some respects coincides with the Phase Rule; and it is only owing to the more general applicability of the latter that the very important generalization of van't Hoff has been somewhat lost sight of.

      The exposition of the Phase Rule and its applications given in the following pages has been made entirely non-mathematical, the desire having been to explain as clearly as possible the principles underlying the Phase Rule, and to illustrate their application to the classification and investigation of equilibria, by means of a number of cases actually studied. While it has been sought to make the treatment sufficiently elementary to be understood by the student just commencing the study of chemical equilibria, an attempt has been made to advance his knowledge to such a stage as to enable him to study with profit the larger works on the subject, and to follow with intelligence the course of investigation in this department of Physical Chemistry. It is also hoped that the volume may be of use, not only to the student of Physical Chemistry, or of the other branches of that science, but also to the student of Metallurgy and of Geology, for whom an acquaintance with at least the principles of the Phase Rule is becoming increasingly important.

      In writing the following account of the Phase Rule, it is scarcely necessary to say that I have been greatly indebted to the larger works on Chemical Equilibria by Ostwald ("Lehrbuch"), Roozeboom ("Die Heterogenen Gleichgewichte"), and Bancroft ("The Phase Rule"); and in the case of the first-named, to the inspiration also of personal teaching. My indebtedness to these and other authors I have indicated in the following pages.

      In conclusion, I would express my thanks to Sir William Ramsay, whose guidance and counsel have been constantly at my disposal; and to my colleagues, Dr. T. Slater Price and Dr. A. McKenzie, for their friendly criticism and advice. To Messrs. J. N. Friend, M.Sc., and W. E. S. Turner, B.Sc., I am also indebted for their assistance in reading the proof-sheets.

      A. F.

      November, 1903.

       Table of Contents

       Table of Contents

      INTRODUCTION

      General.—Before proceeding to the more systematic treatment of the Phase Rule, it may, perhaps, be not amiss to give first a brief forecast of the nature of the subject we are about to study, in order that we may gain some idea of what the Phase Rule is, of the kind of problem which it enables us to solve, and of the scope of its application.

      It has long been known that if water is placed in a closed, exhausted space, vapour is given off and a certain pressure is created in the enclosing vessel. Thus, when water is placed in the Torricellian vacuum of the barometer, the mercury is depressed, and the amount of depression increases as the temperature is raised. But, although the pressure of the vapour increases as the temperature rises, its value at any given temperature is constant, no