Группа авторов

Climate Impacts on Sustainable Natural Resource Management


Скачать книгу

P., Rehman, S., Krishna, G.A. et al. (2020). Assessing forest cover vulnerability in Uttarakhand, India using analytical hierarchy process. Modeling Earth Systems and Environment https://doi.org/10.1007/s40808‐019‐00710‐y.

      43 Polevshchikova, I. (2019). Disturbance analyses of forest cover dynamics using remote sensing and GIS. IOP Conference Series: Earth and Environmental Science, IOP Publishing.

      44 Rasooli, S., Bonyad, A.E., and Pir Bavaghar, M. (2018). Forest fire vulnerability map using remote sensing data, GIS and AHP analysis (case study: Zarivar Lake surrounding area). Caspian Journal of Environmental Sciences 16 (4): 369–377.

      45 Rautiainen, M. and Stenberg, P. (2005). Application of photon recollision probability in coniferous canopy reflectance simulations. Remote Sensing of Environment 96 (1): 98–107.

      46 Raxworthy, C.J., Martinez‐Meyer, E., Horning, A. et al. (2003). Predicting distributions of known and unknown reptile species in Madagascar. Nature 426 (6968): 837–841.

      47 Ritchie, J.C. and Cooper, C.M. (1991). An algorithm for estimating surface suspended sediment concentrations with landsat mss digital data 1. JAWRA Journal of the American Water Resources Association 27 (3): 373–379.

      48 Ritchie, J.C., Schiebe, F.R., Cooper, C.M., and Harrington, J.A. Jr. (1994). Chlorophyll measurements in the presence of suspended sediment using broad band spectral sensors aboard satellites. Journal of Freshwater Ecology 9 (3): 197–206.

      49 Robinson, L., Elith, J., and Hobday, A. (2011). Pushing the limits in marine species distribution modelling: lessons from the land present challenges and opportunities. Global Ecology and Biogeography 20 (6): 789–802.

      50 Saidi, S., Bouri, S., Dhia, H.B., and Anselme, B. (2009). A GIS‐based susceptibility indexing method for irrigation and drinking water management planning: application to Chebba–Mellouleche Aquifer, Tunisia. Agricultural Water Management 96 (12): 1683–1690.

      51 San Juan, R.F.d.V. and Domingo‐Santos, J.M. (2018). The role of GIS and LiDAR as tools for sustainable forest management. GIS‐An Overview of Applications 1: 124–148.

      52 Shaharum, N.S.N., Shafri, H.Z.M., Gambo, J., and Abidin, F.A.Z. (2018). Mapping of Krau wildlife reserve (KWR) protected area using Landsat 8 and supervised classification algorithms. Remote Sensing Applications: Society and Environment 10: 24–35.

      53 Sharp, E., Perry, C., Scharen, A. et al. (1985). Monitoring cereal rust development with a spectral radiometer. Phytopathology 75 (8): 936–939.

      54 Shrestha, H.L. (2020). Geospatial solutions for forest management: a case study from Nepal. In: Handbook of Research on the Conservation and Restoration of Tropical Dry Forests (eds. R. Bhadouria, S. Tripathi, P. Srivastava and P. Singh), 268–283. IGI Global.

      55 Shrivastava, P., Tripathi, M., and Das, S. (2004). Hydrological modelling of a small watershed using satellite data and GIS technique. Journal of the Indian Society of Remote Sensing 32 (2): 145–157.

      56 Singh, H., Kumar, N., Kumar, M., and Singh, R. (2020). Modelling habitat suitability of western tragopan (Tragopan melanocephalus) a range‐restricted vulnerable bird species of the Himalayan region, in response to climate change. Climate Risk Management 29: 100241.

      57 Singh, R.K., Sinha, V.S.P., Joshi, P.K., and Kumar, M. (2020a). A multinomial logistic model‐based land use and land cover classification for the south Asian Association for Regional Cooperation nations using moderate resolution imaging spectroradiometer product. Environment, Development and Sustainability: 1–22.

      58 Singh, R.K., Sinha, V.S.P., Joshi, P.K., and Kumar, M. (2020b). Modelling agriculture, forestry and other land use (AFOLU) in response to climate change scenarios for the SAARC nations. Environmental Monitoring and Assessment 192 (4): 1–18.

      59 Steddom, K., Bredehoeft, M., Khan, M., and Rush, C. (2005). Comparison of visual and multispectral radiometric disease evaluations of Cercospora leaf spot of sugar beet. Plant Disease 89 (2): 153–158.

      60 Steinfeld, C. and Kingsford, R.T. (2013). Disconnecting the floodplain: earthworks and their ecological effect on a dryland floodplain in the Murray–Darling Basin, Australia. River Research and Applications 29 (2): 206–218.

      61 Steininger, M.K. (1996). Tropical secondary forest regrowth in the Amazon: age, area and change estimation with thematic mapper data. International Journal of Remote Sensing 17 (1): 9–27.

      62 SuperMap (2019). AI GIS + Remote Sensing Enhances the Ability of Natural Resources Monitoring. Retrieved 18 January 2021, from https://www.supermap.com/en‐us/news/?82_718.html.

      63 Tucker, C.J. (1979). Red and photographic infrared linear combinations for monitoring vegetation. Remote Sensing of Environment 8 (2): 127–150.

      64 Vemu, S. and Pinnamaneni, U.B. (2011). Estimation of spatial patterns of soil erosion using remote sensing and GIS: a case study of Indravati catchment. Natural Hazards 59 (3): 1299–1315.

      65 Vittala, S.S., Govindaiah, S., and Gowda, H.H. (2008). Prioritization of sub‐watersheds for sustainable development and management of natural resources: an integrated approach using remote sensing, GIS and socio‐economic data. Current Science: 345–354.

      Конец ознакомительного фрагмента.

      Текст предоставлен ООО «ЛитРес».

      Прочитайте эту книгу целиком, купив полную легальную версию на ЛитРес.

      Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.

/9j/4AAQSkZJRgABAQEBLAEsAAD/7SZOUGhvdG9zaG9wIDMuMAA4QklNBAQAAAAAAAccAgAAAgAA ADhCSU0EJQAAAAAAEOjxXPMvwRihontnrcVk1bo4QklNBDoAAAAAAPcAAAAQAAAAAQAAAAAAC3By aW50T3V0cHV0AAAABQAAAABQc3RTYm9vbAEAAAAASW50ZWVudW0AAAAASW50ZQAAAABDbHJtAAAA D3ByaW50U2l4dGVlbkJpdGJvb2wAAAAAC3ByaW50ZXJOYW1lVEVYVAAAAAoAQQBkAG8AYgBlACAA UABEAEYAAAAAAA9wcmludFByb29mU2V0dXBPYmpjAAAADABQAHIAbwBvAGYAIABTAGUAdAB1AHAA AAAAAApwcm9vZlNldHVwAAAAAQAAAABCbHRuZW51bQAAAAxidWlsdGluUHJvb2YAAAAJcHJvb2ZD TVlLADhCSU0EOwAAAAACLQAAABAAAAABAAAAAAAScHJpbnRPdXRwdXRPcHRpb25zAAAAFwAAAABD cHRuYm9vbAAAAAAAQ2xicmJvb2wAAAAAAFJnc01ib29sAAAAAABDcm5DYm9vbAAAAAAAQ250Q2Jv b2wAAAAAAExibHNib29sAAAAAABOZ3R2Ym9vbAAAAAAARW1sRGJvb2wAAAAAAEludHJib29sAAAA AABCY2tnT2JqYwAAAAEAAAAAAABSR0JDAAAAAwAAAABSZCAgZG91YkBv4AAAAAAAAAAAAEdybiBk b3ViQG/gAAAAAAAAAAAAQmwgIGRvdWJAb+AAAAAAAAAAAABCcmRUVW50RiNSbHQAAAAAAAAAAAAA AABCbGQgVW50RiNSbHQAAAAAAAAAAAAAAABSc2x0VW50RiNQeGxAcsAAAAAAAAAAAAp2ZWN0b3JE YXRhYm9vbAEAAAAAUGdQc2VudW0AAAAAUGdQcwAAAABQZ1BDAAAAAExlZnRVbnRGI1JsdAAAAAAA AAAAAAAAAFRvcCBVbnRGI1JsdAAAAAAAAAAAAAAAAFNjbCBVbnRGI1ByY0BZAAAAAAAAAAAAEGNy b3BXaGVuUHJpbnRpbmdib29sAAAAAA5jcm9wUmVjdEJvdHRvbWxvbmcAAAAAAAAADGNyb3BSZWN0 TGVmdGxvbmcAAAAAAAAADWNyb3BSZWN0UmlnaHRsb25nAAAAAAAAAAtjcm9wUmVjdFRvcGxvbmcA AAAAADhCSU0D7QAAAAAAEAEsAAAAAQACASwAAAABAAI4QklNBCYAAAAAAA4AAAAAAAAAAAAAP4AA ADhCSU0EDQAAAAAABAAAAFo4QklNBBkAAAAAAAQAAAAeOEJJTQPzAAAAAAAJAAAAAAAAAAABADhC SU0nEAAAAAAACgABAAAAAAAAAAI4QklNA/UAAAAAAEgAL2ZmAAEAbGZmAAYAAAAAAAEAL2ZmAAEA oZmaAAYAAAAAAAEAMgAAAAEAWgAAAAYAAAAAAAEANQAAAAEALQAAAAYAAAAAAAE4QklNA/gAAAAA AHAAAP////////////////////////////8D6AAAAAD/////////////////////////////A+gA AAAA/////////////////////////////wPoAAAAAP////////////////////////////8D6AAA OEJJTQQIAAAAAAAQAAAAAQAAAkAAAAJAAAAAADhCSU0EHgAAAAAABAAAAAA4QklNBBoAAAAAA08A AAAGAAAAAAAAAAAAAAuTAAAINAAAAA0AOQA3ADgAMQAxADEAOQA3ADkAMwAzADcAMwAAAAEAAAAA AAAAAAAAAAAAAAAAAAAAAQAAAAAAAAAAAAAINAAAC5MAAAAAAAAAAAAAAAAAAAAAAQAAAAAAAAAA AAAAAAAAAAAAAAAQAAAAAQAAAAAAAG51bGwAAAACAAAABmJvdW5kc09i