P., Rehman, S., Krishna, G.A. et al. (2020). Assessing forest cover vulnerability in Uttarakhand, India using analytical hierarchy process. Modeling Earth Systems and Environment https://doi.org/10.1007/s40808‐019‐00710‐y.
43 Polevshchikova, I. (2019). Disturbance analyses of forest cover dynamics using remote sensing and GIS. IOP Conference Series: Earth and Environmental Science, IOP Publishing.
44 Rasooli, S., Bonyad, A.E., and Pir Bavaghar, M. (2018). Forest fire vulnerability map using remote sensing data, GIS and AHP analysis (case study: Zarivar Lake surrounding area). Caspian Journal of Environmental Sciences 16 (4): 369–377.
45 Rautiainen, M. and Stenberg, P. (2005). Application of photon recollision probability in coniferous canopy reflectance simulations. Remote Sensing of Environment 96 (1): 98–107.
46 Raxworthy, C.J., Martinez‐Meyer, E., Horning, A. et al. (2003). Predicting distributions of known and unknown reptile species in Madagascar. Nature 426 (6968): 837–841.
47 Ritchie, J.C. and Cooper, C.M. (1991). An algorithm for estimating surface suspended sediment concentrations with landsat mss digital data 1. JAWRA Journal of the American Water Resources Association 27 (3): 373–379.
48 Ritchie, J.C., Schiebe, F.R., Cooper, C.M., and Harrington, J.A. Jr. (1994). Chlorophyll measurements in the presence of suspended sediment using broad band spectral sensors aboard satellites. Journal of Freshwater Ecology 9 (3): 197–206.
49 Robinson, L., Elith, J., and Hobday, A. (2011). Pushing the limits in marine species distribution modelling: lessons from the land present challenges and opportunities. Global Ecology and Biogeography 20 (6): 789–802.
50 Saidi, S., Bouri, S., Dhia, H.B., and Anselme, B. (2009). A GIS‐based susceptibility indexing method for irrigation and drinking water management planning: application to Chebba–Mellouleche Aquifer, Tunisia. Agricultural Water Management 96 (12): 1683–1690.
51 San Juan, R.F.d.V. and Domingo‐Santos, J.M. (2018). The role of GIS and LiDAR as tools for sustainable forest management. GIS‐An Overview of Applications 1: 124–148.
52 Shaharum, N.S.N., Shafri, H.Z.M., Gambo, J., and Abidin, F.A.Z. (2018). Mapping of Krau wildlife reserve (KWR) protected area using Landsat 8 and supervised classification algorithms. Remote Sensing Applications: Society and Environment 10: 24–35.
53 Sharp, E., Perry, C., Scharen, A. et al. (1985). Monitoring cereal rust development with a spectral radiometer. Phytopathology 75 (8): 936–939.
54 Shrestha, H.L. (2020). Geospatial solutions for forest management: a case study from Nepal. In: Handbook of Research on the Conservation and Restoration of Tropical Dry Forests (eds. R. Bhadouria, S. Tripathi, P. Srivastava and P. Singh), 268–283. IGI Global.
55 Shrivastava, P., Tripathi, M., and Das, S. (2004). Hydrological modelling of a small watershed using satellite data and GIS technique. Journal of the Indian Society of Remote Sensing 32 (2): 145–157.
56 Singh, H., Kumar, N., Kumar, M., and Singh, R. (2020). Modelling habitat suitability of western tragopan (Tragopan melanocephalus) a range‐restricted vulnerable bird species of the Himalayan region, in response to climate change. Climate Risk Management 29: 100241.
57 Singh, R.K., Sinha, V.S.P., Joshi, P.K., and Kumar, M. (2020a). A multinomial logistic model‐based land use and land cover classification for the south Asian Association for Regional Cooperation nations using moderate resolution imaging spectroradiometer product. Environment, Development and Sustainability: 1–22.
58 Singh, R.K., Sinha, V.S.P., Joshi, P.K., and Kumar, M. (2020b). Modelling agriculture, forestry and other land use (AFOLU) in response to climate change scenarios for the SAARC nations. Environmental Monitoring and Assessment 192 (4): 1–18.
59 Steddom, K., Bredehoeft, M., Khan, M., and Rush, C. (2005). Comparison of visual and multispectral radiometric disease evaluations of Cercospora leaf spot of sugar beet. Plant Disease 89 (2): 153–158.
60 Steinfeld, C. and Kingsford, R.T. (2013). Disconnecting the floodplain: earthworks and their ecological effect on a dryland floodplain in the Murray–Darling Basin, Australia. River Research and Applications 29 (2): 206–218.
61 Steininger, M.K. (1996). Tropical secondary forest regrowth in the Amazon: age, area and change estimation with thematic mapper data. International Journal of Remote Sensing 17 (1): 9–27.
62 SuperMap (2019). AI GIS + Remote Sensing Enhances the Ability of Natural Resources Monitoring. Retrieved 18 January 2021, from https://www.supermap.com/en‐us/news/?82_718.html.
63 Tucker, C.J. (1979). Red and photographic infrared linear combinations for monitoring vegetation. Remote Sensing of Environment 8 (2): 127–150.
64 Vemu, S. and Pinnamaneni, U.B. (2011). Estimation of spatial patterns of soil erosion using remote sensing and GIS: a case study of Indravati catchment. Natural Hazards 59 (3): 1299–1315.
65 Vittala, S.S., Govindaiah, S., and Gowda, H.H. (2008). Prioritization of sub‐watersheds for sustainable development and management of natural resources: an integrated approach using remote sensing, GIS and socio‐economic data. Current Science: 345–354.
Конец ознакомительного фрагмента.
Текст предоставлен ООО «ЛитРес».
Прочитайте эту книгу целиком, купив полную легальную версию на ЛитРес.
Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.