Группа авторов

Analytical Methods for Environmental Contaminants of Emerging Concern


Скачать книгу

target="_blank" rel="nofollow" href="http://dx.doi.org/10.1016/j.envint.2019.105234">10.1016/j.envint.2019.105234.

      35 35 European Environment Agency (2018). European waters. Assessment of status and pressures 2018. EEA Report No 7/2018. Available at: https://www.eea.europa.eu/publications/state-of-water. Accessed 14 December 2021.

      36 36 Sjerps, R.M.A., Kooij, P.J.F., van Loon, A., and Van Wezel, A.P. (2019). Occurrence of pesticides in Dutch drinking water sources. Chemosphere 235: 510–518. doi: 10.1016/j.chemosphere.2019.06.207.

      37 37 Pérez, D.J., Iturburu, F.G., Calderon, G., Oyesqui, L.A.E., De Gerónimo, E., and Aparicio, V.C. (2021). Ecological risk assessment of current-use pesticides and biocides in soils, sediments and surface water of a mixed land-use basin of the Pampas region, Argentina. Chemosphere 263: 128061. doi: 10.1016/j.chemosphere.2020.128061.

      38 38 Ordaz-Guillén, Y., Galíndez-Mayer, C.J., Ruiz-Ordaz, N., Juárez-Ramírez, C., Santoyo-Tepole, F., and Ramos-Monroy, O. (2014). Evaluating the degradation of the herbicides picloram and 2,4-D in a compartmentalized reactive biobarrier with internal liquid recirculation. Environ. Sci. Pollut. Res. 21: 8765–8773. doi: 10.1007/s11356-014-2809-8.

      39 39 Magnoli, K., Carranza, C.S., Aluffi, M.E., Magnoli, C.E., and Barberis, C.L. (2020). Herbicides based on 2,4-D: its behavior in agricultural environments and microbial biodegradation aspects. A review. Environ. Sci. Pollut. Res. 27: 38501–38512. doi: 10.1007/s11356-020-10370-6.

      40 40 Andreu, V. and Picó, Y. (2012). Determination of currently used pesticides in biota. Anal. Bioanal. Chem. 404: 2659–2681. doi: 10.1007/s00216-012-6331-x.

      41 41 Pelosi, C., Barot, S., Capowiez, Y., Hedde, M., and Vandenbulcke, F. (2014). Pesticides and earthworms: a review. Agron. Sustain. Dev. 34: 199–228. doi: 10.1007/s13593-013-0151-z.

      42 42 Schäfer, S., Buchmeier, G., Claus, E., Duester, L., Heininger, P., Körner, A., Mayer, P., Paschke, A., Rauert, C., Reifferscheid, G., Rüdel, H., Schlechtriem, C., Schröter-Kermani, C., Schudoma, D., Smedes, F., Steffen, D., and Vietoris, F. (2015). Bioaccumulation in aquatic systems: methodological approaches, monitoring and assessment. Environ. Sci. Eur. 27: 5. doi: 10.1186/s12302-014-0036-z.

      43 43 Olisah, C., Okoh, O.O., and Okoh, A.I. (2020). Occurrence of organochlorine pesticide residues in biological and environmental matrices in Africa: a two-decade review. Heliyon 6: e03518. doi: 10.1016/j.heliyon.2020.e03518.

      44 44 Girones, L., Oliva, A.L., Marcovecchio, J.E., and Arias, A.H. (2020). Spatial distribution and ecological risk assessment of residual organochlorine pesticides (OCPs) in South American marine environments. Curr. Environ. Heal. Reports 7: 147–160. doi: 10.1007/s40572-020-00272-7.

      45 45 Lupi, L., Bedmar, F., Wunderlin, D.A., and Miglioranza, K.S.B. (2019). Levels of organochlorine pesticides in soils, mesofauna and streamwater from an agricultural watershed in Argentina. Environ. Earth Sci. 78: 1–9. doi: 10.1007/s12665-019-8579-3.

      46 46 Masiá, A., Campo, J., Vázquez-Roig, P., Blasco, C., and Picó, Y. (2013). Screening of currently used pesticides in water, sediments and biota of the Guadalquivir River Basin (Spain). J. Hazard. Mater. 263: 95–104. doi: 10.1016/j.jhazmat.2013.09.035.

      47 47 Belenguer, V., Martinez-Capel, F., Masiá, A., and Picó, Y. (2014). Patterns of presence and concentration of pesticides in fish and waters of the Júcar River (eastern Spain). J. Hazard. Mater. 265: 271–279. doi: 10.1016/j.jhazmat.2013.11.016.

      48 48 Masiá, A., Campo, J., Navarro-Ortega, A., Barceló, D., and Picó, Y. (2015). Pesticide monitoring in the basin of Llobregat River (Catalonia, Spain) and comparison with historical data. Sci. Total Environ. 503–504: 58–68. doi: 10.1016/j.scitotenv.2014.06.095.

      49 49 Ccanccapa, A., Masiá, A., Navarro-Ortega, A., Picó, Y., and Barceló, D. (2016). Pesticides in the Ebro River basin: occurrence and risk assessment. Environ. Pollut. 211: 414–424. doi: 10.1016/j.envpol.2015.12.059.

      50 50 Maceira, A., Marcé, R.M., and Borrull, F. (2020). Analytical methods for determining organic compounds present in the particulate matter from outdoor air. Trends Anal. Chem. 122: 115707. doi: 10.1016/j.trac.2019.115707.

      51 51 Sanjuán-Herráez, D., Rodríguez-Carrasco, Y., Juan-Peiró, L., Pastor, A., and de La Guardia, M. (2011). Determination of indoor air quality of a phytosanitary plant. Anal. Chim. Acta 694: 67–74. doi: 10.1016/j.aca.2011.03.039.

      52 52 Batterman, S.A., Chernyak, S.M., Gounden, Y., Matooane, M., and Naidoo, R.N. (2008). Organochlorine pesticides in ambient air in Durban, South Africa. Sci. Total Environ. 397: 119–130. doi: 10.1016/j.scitotenv.2008.02.033.

      53 53 Duong, H.T., Kadokami, K., Trinh, H.T., Phan, T.Q., Le, G.T., Nguyen, D.T., Nguyen, T.T., and Nguyen, D.T. (2019). Target screening analysis of 970 semi-volatile organic compounds adsorbed on atmospheric particulate matter in Hanoi, Vietnam. Chemosphere 219: 784–795. doi: 10.1016/j.chemosphere.2018.12.096.

      54 54 Anh, H.Q., Tomioka, K., Tue, N.M., Tuyen, L.H., Chi, N.K., Minh, T.B., Viet, P.H., and Takahashi, S. (2019). A preliminary investigation of 942 organic micro-pollutants in the T atmosphere in waste processing and urban areas, northern Vietnam: levels, potential sources, and risk assessment. Ecotoxicol. Environ. Saf. 167: 354–364. doi: 10.1016/j.ecoenv.2018.10.026.

      55