Alexander Chesalov

Artificial Intelligence Glossarium: 1000 terms


Скачать книгу

Platform thus: “An AIOps platform combines big data and machine learning functionality to support all primary IT operations functions through the scalable ingestion and analysis of the ever-increasing volume, variety and velocity of data generated by IT. The platform enables the concurrent use of multiple data sources, data collection methods, and analytical and presentation technologies”. [50,51].

      Artificial Intelligence Markup Language AIML (Язык разметки искусственного интеллекта) – An XML dialect for creating natural language software agents [52]

      Artificial Intelligence Open Library (Открытая библиотека искусственного интеллекта) is a set of algorithms designed to develop technological solutions based on artificial intelligence, described using programming languages and posted on the Internet.

      Artificial intelligence system (AIS, Система искусственного интеллекта) is a programmed or digital mathematical model (implemented using computer computing systems) of human intellectual capabilities, the main purpose of which is to search, analyze and synthesize large amounts of data from the world around us in order to obtain new knowledge about it and solve them. basis of various vital tasks. The discipline “Artificial Intelligence Systems” includes consideration of the main issues of modern theory and practice of building intelligent systems.

      Artificial intelligence technologies (Технологии искусственного интеллекта) – technologies based on the use of artificial intelligence, including computer vision, natural language processing, speech recognition and synthesis, intelligent decision support and advanced methods of artificial intelligence.

      Artificial life (Alife, A-Life, Искусственная жизнь) is a field of study wherein researchers examine systems related to natural life, its processes, and its evolution, through the use of simulations with computer models, robotics, and biochemistry. The discipline was named by Christopher Langton, an American theoretical biologist, in 1986. [2] In 1987 Langton organized the first conference on the field, in Los Alamos, New Mexico. There are three main kinds of alife, named for their approaches: soft, from software; hard, from hardware; and wet, from biochemistry. Artificial life researchers study traditional biology by trying to recreate aspects of biological phenomena [53].

      Artificial Narrow Intelligence (ANI) (Узкий искусственный интеллект) – Artificial Narrow Intelligence, also known as weak or applied intelligence, represents most of the current artificial intelligent systems which usually focus on a specific task. Narrow AIs are mostly much better than humans at the task they were made for: for example, look at face recognition, chess computers, calculus, and translation. The definition of artificial narrow intelligence is in contrast to that of strong AI or artificial general intelligence, which aims at providing a system with consciousness or the ability to solve any problems. Virtual assistants and AlphaGo are examples of artificial narrow intelligence systems [54,55].

      Artificial Neural Network (ANN) (Искусственная нейронная сеть) – is a computational model in machine learning, which is inspired by the biological structures and functions of the mammalian brain. Such a model consists of multiple units called artificial neurons which build connections between each other to pass information. The advantage of such a model is that it progressively “learns” the tasks from the given data without specific programing for a single task.

      Artificial neuron is a mathematical function conceived as a model of biological neurons, a neural network. The difference between an artificial neuron and a biological neuron is shown in the figure.

      Artificial neurons are the elementary units of an artificial neural network. An artificial neuron receives one or more inputs (representing excitatory postsynaptic potentials and inhibitory postsynaptic potentials on nerve dendrites) and sums them to produce an output signal (or activation, representing the action potential of the neuron that is transmitted down its axon). Typically, each input is weighted separately, and the sum is passed through a non-linear function known as an activation function or transfer function. Transfer functions are usually sigmoid, but they can also take the form of other non-linear functions, piecewise linear functions, or step functions. They are also often monotonically increasing, continuous, differentiable, and bounded [56,57].

      Artificial Superintelligence (ASI) (Искусственный сверхинтеллект) – is a term referring to the time when the capability of computers will surpass humans. “Artificial intelligence,” which has been much used since the 1970s, refers to the ability of computers to mimic human thought. Artificial superintelligence goes a step beyond and posits a world in which a computer’s cognitive ability is superior to a human.

      Assistive intelligence (Вспомогательный интеллект) is AI-based systems that help make decisions or perform actions.

      Association (Ассоциация) is another type of unsupervised learning method that uses different rules to find relationships between variables in a given dataset. These methods are frequently used for market basket analysis and recommendation engines, along the lines of “Customers Who Bought This Item Also Bought” recommendations.

      Association for the Advancement of Artificial Intelligence (AAAI) (Ассоциация по развитию искусственного интеллекта) — An international, nonprofit, scientific society devoted to promote research in, and responsible use of, artificial intelligence. AAAI also aims to increase public understanding of artificial intelligence (AI), improve the teaching and training of AI practitioners, and provide guidance for research planners and funders concerning the importance and potential of current AI developments and future directions

      Association Rule Learning (Правила обучения ассоциации) – A rule-based Machine Learning method for discovering interesting relations between variables in large data sets.

      Asymptotic computational complexity (Асимптотическая вычислительная сложность) – In computational complexity theory, asymptotic computational complexity is the usage of asymptotic analysis for the estimation of computational complexity of algorithms and computational problems, commonly associated with the usage of the big O notation [58].

      Asynchronous inter-chip protocols (Асинхронные межкристальные протоколы) are protocols for data exchange in low-speed devices; instead of frames, individual characters are used to control the exchange of data.

      Attention mechanism (Механизм внимания) is one of the key innovations in the field of neural machine translation. Attention allowed neural machine translation models to outperform classical machine translation systems based on phrase translation. The main bottleneck in sequence-to-sequence learning is that the entire content of the original sequence needs to be compressed into a vector of a fixed size. The attention mechanism facilitates this task by allowing the decoder to look