Антон Олегович Малютин

120 детских вопросов о физике и окружающем мире


Скачать книгу

(предположим, у него есть приборы для такого наблюдения), как камень преодолевает многие километры вместе с вращением Земли, одновременно пролетая десятки километров вместе с Землёй по орбите вокруг Солнца, и, наконец, пролетает сотни километров вместе с движением Солнца в Галактике – траектория этого камня получится весьма замысловатой.

      Один из примеров принципа относительности Галилея. Наблюдатель в вагоне видит отвесное падение камня. Внешний наблюдатель видит падение камня по параболе. Оба наблюдатели увидят одинаковую скорость падения камня по вертикали, но разные горизонтальные скорости и траектории

      Все это – одно из следствий принципа относительности, сформулированного ещё в 1632 году Галилео Галилеем. Согласно этому принципу, физические явления для систем, движущихся прямолинейно и равномерно (такие системы называются инерциальными) будут одинаковыми, однако величины, характеризующие эти явления, могут отличаться. В нашем случае все наблюдатели видят падающий камень, однако для каждого из них координаты, скорость и ускорение (а следовательно – и траектория движения) этого камня будут разными.

      Так что мы можем сделать простой, но шокирующий вывод: у летящего камня (как и у любого тела в нашей Вселенной) нет «истинной» траектории движения. И чтобы говорить о траектории и, тем более, производить её расчёт, нужно обязательно указывать, относительно какой системы отсчёта это выполняется.

      Легко ли поднять Землю рычагом?

      Широко известно выражение Архимеда «Дайте мне точку опоры, и я подниму Землю!»1, которое давно стало крылатым. Однако, если разобраться в вопросе, то станет понятно – поднять Землю гипотетически можно, но на практике ни Архимед, ни кто-либо другой сделать этого не сможет.

      Для начала разберёмся, почему с помощью рычага можно перемещать тяжёлые предметы. Рычаг – это простейший механизм, в котором используется закон сохранения энергии. При перемещении рычага оба его плеча, независимо от их длины, должны совершать равную работу. А работа – это произведение силы, приложенной к рычагу, на путь (или перемещение). Понятно, что короткое плечо рычага может переместиться на меньшее расстояние, чем длинное плечо, но так как работа, совершаемая плечами одинакова, то на коротком плече возникает большее усилие. При этом длинное плечо совершает больший путь с приложением меньшей силы.

      Теперь понятно, о чём думал Архимед – рычагом можно поднять любую массу, даже Землю, для этого достаточно найти рычаг достаточной длины и точку опоры для него. Но вот именно здесь-то Архимед и просчитался.

      Простые расчёты приводят к весьма неожиданным результатам. Чтобы человек мог «поднять» Землю хотя бы на 1 см, потребуется рычаг, длина плеч которого отличается в 1023 раз (число с 23 нулями)! Откуда такая разница? Всё просто: масса Земли составляет примерно 6х1024 кг, а человек в среднем может поднять 60 кг, то есть – разница в те самые 1023 раз. При такой длине рычага перемещение его короткого плеча на 1 см