Инженер

Графическое моделирование в инженерии: современные подходы


Скачать книгу

для описания движения объекта:

      dx/dt = v

      где x – положение объекта, v скорость а t время.

      Мы можем затем интегрировать это уравнение для расчета положения объекта в любой момент времени:

      x(t) = ∫v dt

      Это уравнение описывает положение объекта в любой момент времени, и мы можем использовать его для создания графической модели движения объекта.

      Конец ознакомительного фрагмента.

      Текст предоставлен ООО «Литрес».

      Прочитайте эту книгу целиком, купив полную легальную версию на Литрес.

      Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.

/9j/4AAQSkZJRgABAQEASABIAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wgARCAhhBdwDASIAAhEBAxEB/8QAGwAAAgMBAQEAAAAAAAAAAAAABAUCAwYBAAf/xAAZAQADAQEBAAAAAAAAAAAAAAABAgMABAX/2gAMAwEAAhADEAAAAcmetZKVOsyuqndaqaryI6nM6aHQmXtFNFl6MqwoovraXLI3sh3jawpTRW2YCJWilLVG0dxc1LG7xCRFBQ6CzVzVTMfQ0pXPNJSDOEzLN9XB5S9FIC6aVsMyIJxL6JOdF0jIq4YDil5Z1tbc6TEfrwaVuoVkdg+pJywOoAyJr26ud3whwKsC6TaOkgdRmmRCsApHmPgFWp0wolDLpIU2so9yooGgM0RT3tUgSe02kba6HXHu86UjDou1qNdNTdQUHtsWed0Abvu+zR5OJ1a1oEyC2csZO1zrKw9720uxmd6XoqwOOe5adWTNOWuO7R0YWo0TForYqTq2C80Y8ElewLV3hc3VrVTUNcMK1qvJa7QPeiREbhsgSnQwxim0uaUqCKGKsxBMWRpoElJgdylf5JCQRS5JLkuuRnVKXK0j9F7890VJ6MdMnO2EMjcy7xC4+fodHBL6fQ9t9Pn6clONvbwyb9v57MMnr8Mruuo66o+bZbQhs9UwWlNG4UN4XR5DY5Dp5ira7KJWcAeVcKGy5HsGpJUqWiYqiVazJ6mVgFrMJhRrM1p49ChK8UsB5x9aEIS68IFUFMrykmgabZS0ZVy89ODC6ogPW5S6AIqpKoh0inLTmZ6CYjjSbbPsmR/ltDnr83lptDYIjrNSBU4XBg7Hk0ZFx9HHPScyIQyeRxFsOV4bBeP2sHfMpYQ6VUKyuiAAIl0aoEcoBDdUaREgOOJFqBkjtoB+DG2UM7Q5Y3kRmO6aWyOjRRBz83sdslHTVkNKxKmVj5dEq0pCqxD0GbOlTiNgMysdNi9Mc2mLbntj6O3OS9hWCxFeY0C4tMWUubSnz2aVV1U2xKp2snVmfXfhb2MMQwygsGa2QzCWpzNi7V5zip1sqtq5+nVj3hyfgYc+iIjWs28audEItX292sGfI1ZU1WaFTUK7WqRWa06VoAsK1qzqJXIErvOaS8ZZXWZbJPRZ3QWnNDo83jIladtvcFvsECaNfVG+g7y7j6cW2Ip6IiuglQbTY7WZppj9v7081j/PmpWQnpRo6cJnMehFktig6ICwfK2nSxWnOpoJIs6eZKziqu6+w5LrMprUqpSOkjoVssZtIdCVWyUtpUG0W5659k8YXVSKu+USIOZL2BVOuYJ8e302FYvc83RqDlWi5evOT06AFmCeElloDa2/OntpHZH9IRaVnLvptOdfVe+MeAzr9wnnve29OvuJAbwcFO6QsevhAZLT6RdhpaCrhMTVO7EmURs9fAwlW7CJlQqHqI2uWPFZNLzOs+vifQDXvN35CWpZ1DhhjOJGh1sQZYHV6c9lxfNt0riqN2kGzdlnZ1rnXYVsaKbSdxDlrYe8K0qXz3VeA14zp7nq2ScJ8w96Ug3RyQZvmlDhQjnTrgyNKWgAboTlKNWN4ZgZGh2puV6VcwTBmr4X10qyOauQ0yhx18xIJGe6IXU9s2jKY+LZIaECsaqGatf5hCbLL48ld2n1KzMCm7xpyfzJXB5zRZ2sev0L2qk5nU5plEMB0O2qxe3wKOSGSLGulJHN4epPChb1TELFaXg+yWxyEnjy33Rz+voIVvSrthdq7TvIdKZA7QXiwWsV7IKRRdRHVBMZssLFIKQpI4HS67I6/UUJHoNJ1bPJa7nugUOFDa+HoWhX6y54i22SKsr4zZDDVbDBVQR1KpJesKVvkb0lNOWi5elafkWSM3XsM8tjr1zlhmaGA1+WnhcWADER3gKI6VsjAoo9kTcddBT1aCkFHS/EWlcbA+L0OK3i2/MWzzRXTyBrn0yF1rBSldLVHi7MdNL1FV5VqMCXOxHPWslaWoaqzuvguWliUl5mveK0VzxOjKnC9mdUv0KUBzos9omWXbeMsVDlNjnO3VTovn2GHSaDTtccvYOoELIOlhAV4Pap1MvO8s2nRd7akqqasttz7qdEa5iGrWVM1Tz0QQ1Cs/UMwAVYjsRhU2CuQmiDL2xSturjfVFCX81UDLP6Dr5rgGa68SKzBBi0zlSdSNZHMpcqW6knnhV0ThGPN0vsXrcRtRoBdCy11pGg1eV+gCUni9MeVaS9PsasMK00ndjMD9AzSuuoZGwvwwUzmtgyx3PbypWwOwRu4v6BmZulue3uublpiM2OJtpKuHKNnDqUIdIttGALVcyD2wsqje6shMptjYQHIQ8Om2GR2KunruJZFmlSOodCVWzWUEKSx3ic7Ae35Fg7UTAC4YsmTRWwwC7yUrpZ0kMleiz2iZVdBaqPRUSC1VnyLQLI3CcLWGycUsSkLroWMqsxZWyuh63NIyNsZPJSBpccNYPSOKEQDPFNDdAnzfRTNADqzyLD13bxSLEAeTID3p2cylArluXzSsGgZS6iJ9gMuXcj0rzBzOviPX6Be815/SsB1zhajqmis/FkoeI1zTw9DBlSF3azkqNrY03gr+m3HK2AhoO0vFIpIWm+iieuGuwjGyJ3vckDKzvQfVXUB8YWKjRtCIqdJmKh4E6wovHBcqHCtSrjy0k1mjKAYAdVrTTomyuFW11d8K5JqqL7eY+WQutPYDobRtEHn4FdEt9bmTPlekUNc3rszsvqtAhbW5d3ZOhAZiCiK9BnNGwtTsc602rXMO6xMVkJMzSxVM7fY3Y4xCYCYr5+p43VNJ0xOnzmzeFcqAo3ZqdHhizkrM3vn46bh1TBaZSBNlj2HQko0mWBGWFhdXKXOq90bk0RUhSEtGHNBPDqNfj9hOorbMrWm/Y5TVR6Eitspsk4ypeLdgG3vxAxXrsX1nb8YEwsyhegGlgLxSmSOkzOpGTgmix6RzpFyo0WsAEqHXaI8zAWAdJTl6eCP3jqz9oxD6c9po17ThjdnUDmgtrlhRRoU2hVyrqrvO9Kha6QMzWBsunjzlBPenm8udp52Z3U35VN/mfP1q5OYIyyw/1ECu5CVxCwzezz9ArZKnnZOmZEBR5JSovzHYZe9XrltTfm0LfVbEV0d2laua7QkN3ag1U627c1hWKkd6M4DC3GIVtaSnJIN6qr2cdQA460FFBHFTuKRg2l9alvwGrYyI3di1sogrLJSO4SG1AG5cBOz9LwSFdFYvYyfMHq3HdyrjgfdHO38qhlZpifYtBSBlovb50pNo874PF4DYRC1jsGqF1y8tf28legqtlTuZ1iGkQ34pdEpSaBLjSSKURv8lrssjdAPAh0tXCR9y9K2ujpTzCzI1R0slRXE3JLKIy9QQjAsAD1DB0kc8/TVkdRgqxLroZdEYSnwq4rkOuMrvgrZksGFElssdtI9CFazUvNlocjrY9KlU0VutgR6+kdW4UN78WbUOQcSy1sMWJITHKHwsVaheItZPObCZnKcnOPQW0rNjRUCeHqAiFjuhgZQdJWzrnipud9FBrbugR7T11Ih6wblZHQRvF8U9pJD5rsE5EKCyo/N35TBhO9PO1G4OtHVg9y5aerNh03er4NOSiVovJDER6AGC1j0cj9E3SUnC8G7ZTOJMq32ldZRoMK8LqyOqRBCqjgImy2XNYT2rgTRsG5SOcNOGBGkzcvCo7XIRZhoQZxZV3HMWVUDqVgK4z10qTDODBNjZwGXCbcQLb+bViHgYLyaijhT156jgJoK2YsszGFdXWiYo2fcpnPZzJyKiejl9XbwrX22IJo8qkqhfpWSG9bolmyht4/n6S8m4XHLtIsfFWCh2lh0RRvUHZxGMEb28vInaebVGjzO3WVepZmoRkqj0tDAXXL0JWQ2evKVUJ3hfSSFiNcQ0KpyD7lZQwDLBYOUznk7KPn30DAdPLxooMtMyE4gthCAwDAYVAh+kSwH2OP2EehIKWE846jP6GV0qZyloCw+xeLTV4ZnbkIh7hFnLKcR3CQ/AgK+rUGNDs09QTnWilEoagyvY3z5squ1bVWlRL5XsOLmq5+excxVMve0lDohAr2IBMTCtPrebchYONbKMwXXguxaVwvdtAvNAIVSNl2cVQDNYGacYA7KDQzOfpruhZiHG+NZXmUXc/SAevbdXEzTPUToJKu1TwwhhzUSlBX2QmuE3Bcbh1IdVwe1t0WGyy26nblgpByxwqabT7LjzQazK7JSKo0oByvM7LOUQs0eTK0W3rgYETlG01560ZjOknE0ykgNVXGJHkbhLgMyEY7ImITACsE0IVndKEqTPXskKNwAf1RDZrSK85Mxo4NFN4+IdLcAURs1LlM6XlU4V3Fq+XrF2K1z18tCo9fzXLRzrTaGzPF357TUwrjRjZ8Jjru5nrrshhlMmchqVsOrSt81o+XoxVZRffxgs9BVNqA28IWXTYRUh9KrbZm4W3pg5cpXfL0iYTeYe/PRfyfRFiPZXOjYJihwrNXsSA76b84euyOsnRKhepKJds8dsY3Spm6lxHkoU5yhjbHmB3TE2jkO6tbGy2OjnG2ek6RkSLWsL8rVmuvdAVrS3n6kB49sepyGSLC4/YwpEtaxWvz3WeqYNTchMW1/cjYu08sv1Tp/ZjmOopz3ttR7LTI0Cy+U6LulB0kxWlgVhPoZfRzyAbBBn9B46shKC5Op8xSJ0r5V1gZbURKq1iEZ08rJV0Rp8sHJV3xNVfBRPbUT3x7ZKwgwRmjJFonauXWSJxBtstOCkSVgmcqHW1lsK6TS6bMaYEl7nnYbOZ7TgMOkATIOzbVRlY21yjaYRdBFpopYJxQd4NXPcovM5o8iuPe5TS4DRBIJFBMCk7L1VE7sb1Z6hQ6SuumSC1pO/KtobUbUWG1DBVWxWiYwA5WewsGK3eBYc99RnGeVvGTgAXneiVi1lKqGuAOFehjAVaEwHJSbrbI8XrYMWoPSFqTokWg4erGOVWk6oX29Uctp59oJeQ5dltpLpF245++NpDp0pb83YvxW4xbzj08egtjKJnCA5LLWwGO2W3DXigmvxuzmyJewCpP2szGnj0oVTZY4r971edyxyPmluCMDeU3NOVFhf6Bb88vjf6ABn9AjAqtusouZMnK8BrxCXjWKxXS6W9BYvP2gDXp7c74MUhoHClUYKTFsqBsShNMzb86W2bcz0TtLBKVjZUvmray2sTk6yKJVDDGkDX5j6Qkdoa+rNw22XMpHZ/zP92dk58qVYcYWpWJnezoEyAnaDdC2FZM8aExDOw2IfA4Fw5voQt75aV0aYkgssmYIpClV7HpQvTipAXYCuFToHtBaykgtVktUDB/ldPinTu15Ci8pmcGv0CjCqykiNhhWSkq0OVM9rlxa8E3hVtFFXuyQFFzOB2YIHDzeGs5ChsCJTtUxosXJ2alv0yVGANrctK1ukOJIrrwb+AKWmRYrj1Z6uYpjM1mOrh0WLtnnAwwBYDzLiQYQASPUA7XUiLt8Tg+x217lNBFvZvT5+ix92rpxuizWo4PQyWrGqtKlUNoyS8H9AwzSDkRPshTEqINBVdiF+ahd83bQA8wjTeql/aq35LpmrIHvYWFiWED3QuV1+xx+ym+fUaAnBBrUzqXQgUtlVpx9fCsKo39aQ9072E1ugXzddNgYjKTmq5aaNlgb422aq5mhz4b8O0lwxYfRFjBhXydSgE6u0PUsFlJMRrFowc2pOKI1kXtky3cscp7S+2z5be7HJz0E8CFbauFoDUXMDYDdrK5Y8U25yRGd21tDrgONpaig1ROFVukLpHNzM+ZKplUmO2ZYQEZCS62yueGVzhbI0yXelHREgsijMoQYsyTkQTB9G5jcQr6cYYluwm2SOQbRSVlJhafNaoZXp81pCVo/UgzmCso45QSCdw4Y2NYpHScpe6QMxqlNw+M9TknVUd97ACgWwUhFGuS0ItoNjWz1w61K7QSmTOkjzpkPE6V+VeDqwtlAj5ONSV4paZctaxVnwRwOSwYd1GznManK83SlqMs6+K1onaoc+UVPYUBvMhRewoxuvh6QOXVwBaKmKmhaavJ6Pm76cnLtec81cStHuN2eMwq9R7s57u1H7AniQU6K9W/5+qnA77CV55elCs211VqMkIrmwtnCTKpZrWgcPZYrUToIxQAMj1xlNZz9SJQ4Aqgk7+1h73J15+z5blPlcXGyZgovjRsHR0mhS7rNFjxbeY6nuTc8/ZTQ+zd+XSjDmRokoNGpPix2mrKoUyst6x1bKyC13arZ+Gj6Vz3tFzbPef8xRQf1g0M4AqaQ3yCsrGdvWQnNvRenluNHnjKa+gYseyCUsDNCVlF1BDr1um1Ua1sKpq4aPRpKTJabTxXFrYLIOdeur6pvAQphTPFEYiUuhBgwy1ecwoIvLfWWNgA9SOUewLg9o063J6XZdpcvqsyIMlOM1MS9dNHnfChri1xMXKUnrCvDFx+y/1RJ0ZyCYbWdZGCYW5fit52IZixzbWNjgWHZ0FPh1StNVtumKoisvo5eBEIdn1Ehhji1BatnjQzVd9RarXT0fl3J1uM1ochMsIw51cYcLwsTPCyIa2Kz56K41c5vkvvoJ1wobORaLVduxR6Xk6xBNkkmgD+xa7XZpvYrI/aCLlJe2gy5eJoNYOnCZylRsbssoNEZqtrNndRcQnvGLK+lZeQhZAMGK58hfTdavYrHkdr8bs+bsRrzlFBZ6FlI89T2vKTaLYQ7ZInk6JLo+k/oR62931SXOZqD7cSWfbo9Y7zJWurJmI4jRWNGLTMSN09YcFLAfNZJpzu6+qfFPtZW73vPP3ve2533tl3zr6B8jnXXeEZR6FvKTRrkptdIj320dHJceCaSWhajjLfH9DgxacUqLHUCACiVk6PS0bmL0pHiS8vp3v