Брайан Кристиан

Алгоритмы для жизни: Простые способы принимать верные решения


Скачать книгу

вероятен только в трех комбинациях из шести (2–1–3, 2–3–1, 3–1–2), соответственно в трех остальных случаях нас постигнет неудача – дважды из-за нашей излишней взыскательности (1–2–3, 1–3–2) и один раз по причине неразборчивости (3–2–1).

      4

      Необязательно строго 37 %. Точнее, математически оптимальная доля кандидатов, которых необходимо отсмотреть, рассчитывается по формуле 1/е (е – та же математическая константа, 2,71828…, которая появляется при расчете сложных процентов). Однако вам нет необходимости знать наизусть все 12 десятичных знаков числа е. На самом деле любое значение от 35 до 40 % максимально приближает вас к успеху.

      5

      Более подробно вычислительные риски теории игр рассматриваются в главе 11.

iVBORw0KGgoAAAANSUhEUgAAAgoAAANSCAYAAAAEa+Z7AAAAGXRFWHRTb2Z0d2FyZQBBZG9iZSBJbWFnZVJlYWR5ccllPAAABAhpVFh0WE1MOmNvbS5hZG9iZS54bXAAAAAAADw/eHBhY2tldCBiZWdpbj0i77u/IiBpZD0iVzVNME1wQ2VoaUh6cmVTek5UY3prYzlkIj8+IDx4OnhtcG1ldGEgeG1sbnM6eD0iYWRvYmU6bnM6bWV0YS8iIHg6eG1wdGs9IkFkb2JlIFhNUCBDb3JlIDUuNS1jMDE0IDc5LjE1MTQ4MSwgMjAxMy8wMy8xMy0xMjowOToxNSAgICAgICAgIj4gPHJkZjpSREYgeG1sbnM6cmRmPSJodHRwOi8vd3d3LnczLm9yZy8xOTk5LzAyLzIyLXJkZi1zeW50YXgtbnMjIj4gPHJkZjpEZXNjcmlwdGlvbiByZGY6YWJvdXQ9IiIgeG1sbnM6eG1wTU09Imh0dHA6Ly9ucy5hZG9iZS5jb20veGFwLzEuMC9tbS8iIHhtbG5zOnN0UmVmPSJodHRwOi8vbnMuYWRvYmUuY29tL3hhcC8xLjAvc1R5cGUvUmVzb3VyY2VSZWYjIiB4bWxuczp4bXA9Imh0dHA6Ly9ucy5hZG9iZS5jb20veGFwLzEuMC8iIHhtbG5zOmRjPSJodHRwOi8vcHVybC5vcmcvZGMvZWxlbWVudHMvMS4xLyIgeG1wTU06RG9jdW1lbnRJRD0ieG1wLmRpZDoyMjc2MkUyMzVGREYxMUU3ODQ1RUI4QzM3MzFDQTk4NSIgeG1wTU06SW5zdGFuY2VJRD0ieG1wLmlpZDoyMjc2MkUyMjVGREYxMUU3ODQ1RUI4QzM3MzFDQTk4NSIgeG1wOkNyZWF0b3JUb29sPSJBZG9iZSBJbkRlc2lnbiBDUzYgKFdpbmRvd3MpIj4gPHhtcE1NOkRlcml2ZWRGcm9tIHN0UmVmOmluc3RhbmNlSUQ9InV1aWQ6ZTYyY2NiZDAtNTk2Yy00YmI2LTk4ZDItMDNiZDZjMTA4MTQ5IiBzdFJlZjpkb2N1bWVudElEPSJ1dWlkOmVkMjE1ZWQ4LThlYjktNGJkZi04ZDc0LTFlOTkyOTIzMzk1MSIvPiA8ZGM6Y3JlYXRvcj4gPHJkZjpTZXE+IDxyZGY6bGk+YS5ib2toZW5lazwvcmRmOmxpPiA8L3JkZjpTZXE+IDwvZGM6Y3JlYXRvcj4gPGRjOnRpdGxlPiA8cmRmOkFsdD4gPHJkZjpsaSB4bWw6bGFuZz0ieC1kZWZhdWx0Ij5BbGdvcml0aG1zIHRvIExpdmUgQnkuaW5kZDwvcmRmOmxpPiA8L3JkZjpBbHQ+IDwvZGM6dGl0bGU+IDwvcmRmOkRlc2NyaXB0aW9uPiA8L3JkZjpSREY+IDwveDp4bXBtZXRhPiA8P3hwYWNrZXQgZW5kPSJyIj8+/+cuMwAAm7BJREFUeNrsnQd0VcX6xSckgYQqIioiggpYULGLHQv23nt79vrs9fn4W57tKSr23p8Fey8oFmxYQVSsIMUCSoeQ+p/t3WdlMpxz77ktuUn2b61ZyT11zsyc+fZ8U05RXV2dEUIIIYQIo42SQAghhBASCkIIIYSQUBBCCCFE7iiJ2lFbW2uqqqqaOn7tbKixoVpZJYQQQmRHaWmpadMmPR9BpFAYO3asueuuu0x5eXlTPtNdNrxhw/3KXiGEECJzFi5caE444QQzYMCA3AiFyspKM3PmTFNRUdGUz7WMDZ2UvUIIIUT2QiGTnoJIoVBUVGSKi4v/Dk0Iuh1qlb1CCCFEdpSUlPxt29NFgxmFEEIIIaEghBBCCAkFIYQQQkgoCCGEEEJCQQghhBASCkIIIYSQUBBCCCGEhIIQQgghJBSEEEIIIaEghBBCCAkFIYQQQggJBSGEEEJIKAghhBBCQkEIIYQQEgpCCCGEkFAQQgghhISCEEIIISQUhBBCCCGhIIQQQggJBSGEEEJIKAghhBBCSCgIIYQQQkJBCCGEEBIKQgghhJBQEEIIIYSEghBCCCEkFIQQQgghoSA82tlQpmQQQgghoSDCeMGG920oV1IIIYSQUBAuG9mwjQ3r2LC9kkMIIYSEgnA5yIYi/n+UkkMIIYSEgghY0oY9nd/wKKylZBFCCCGhIMDONvRyfre14XAlixBCCAkFAQ4J2ba/DUspaYQQQkgotG4G2rBVyPaeNuyt5BFCCCGh0Lo50IbSiH1HKh+EEEJIKLReOtmwb5L9mDK5lZJJCCGEhELrBLMbVkpxjKZKCiGEkFBopRwS45hdbeinpBJCCCGh0LpY1YYhzu+HbJgVchy6Jw5WcgkhhJBQaF1gbEJ7/v+XDRfY8EHEsQdTMAghhBASCq0AfCFyf+f3SBsm2/BIxPF9bdhNySaEEEJCoXWAmQwDnN//4198PXJSxDka1CiEEEJCoZXgDmL82SQ8CgBjFB5LIi4GKemEEEJIKLRsetuwk/P7WRvmOL8ftqEy5Dx8WfJIJZ8QQggJhZbNXjYs4fx+wts/1obXIs7Fks49lYRCCCEkFFpumh7k/P7Ehg9Djrs/4vxupuEgSCGEEEJCoQWxuQ3rO7/hTagNOe5lG76LuAY+P91WSSmEEEJCoeXhLpw034anI47DvqipkmvZsJ2SUgghhIRCy2IZ03AthFE2fJ/k+P9RMIShqZLN/93qQdE3iGFtG1YwTeMtwriXXsoWIUS6lCgJcspuFAuuEEgGuh7QBbFPyL4dbFjdhq8bMf4dTf0nsesaOe1gPF8PeV7MHulDQVVlErNFKvl/FY+pYQj+r/XKeBH/L+X/bfh/W+8vnv9VE90llApcA11Pu9uwmUnMfunqCHKkKWa//GbD5yYxoPUVG37NY7pCqBxnw7E2XGfDuTHyAR8xW4VlGb8X2TDDhh8ofCuyiM/KJuEtm8/rLOT1q51QxLQs4f3LTWIBs842TLDhzYhr47w9bVjKhrm8fgXLSXDtWl43CGW8fjnvia5Cd5n1DW3YgHFsbIoY38f5PC74NsyWNky3YYHzTrRxnqsbn//JPMdzoA3rslwvcN7HYuddQ/p25/v9UYgdQh2IlWnnOeWiOiTfSr18a8/36pEs86iDqR8btoD3r+C9q/g8dc79S5xy2ZHxHsHjJRREUtxuh6k0Aqm4N0IooBAeasP5jRh/VLC3NGG5ODFEKJxhwzaNnIfpCgVUHgcwrmunqPi7MKzCc2bSOA2z4dscPUNnCiyMddna8WAsSBKvDSkSh9AIlYYch8ryZwqc+2wYk0HcBrGMRVHnCLswRiQRCjBMF9JoZXJ9GNv3PKGAWUjnNGGdAsMzMkQoIL/ujHF+JdP88zzG8QobdoyZzsNChAKM7SUm+YfxkuUblsd/OkuhgLrvtohyH4eJJrGY3jwJBZGMDdiaDECh+TPGeW+YxHTJtUL2wZBcZcI/JJUPcJ9b2QruycqoQx7vV8Nn/5YV4riQY55iS6UjDUC+3edVaR4PYTCcHoSA35mvn9owjZVcbx6zjZemXdnaP4SV6H+SGPRkoGW1CQ3bLjYsH3JMmCcAwuA8Gwab1F2RMMR9GY5n3pxPT0NcvqbIgHHoz9ZosSdafH6hKFlooqcVB+XpfyxH3ZjeS4SIIhd4NjAzaYoNs2l0fEObjEU8xvXAtWEeF4XEz+9qbMO0KElSHmtCtsOz8iDPhehcIyL/2tKjdHye3heIkO0jxGcAvGgf0/sxKiINH6FQQL6tz7/J8g3vyIdskP2RA48P6r4beF/UfZvGqPums+ygzPzYRF4nCYVmxoHei/pozPMq+cJfE7Kvj0m4se9vRKFwqvO7Pytet4X2OSuedimuhYqzli/fBiH759Jj8myK69zitEDhZbnUhjMjjr3RhntM9Me1SrgPrnW4v7c1i48XqEkjvY6w4SanQpnH1tVtIQbHMI/hesfHwY4KMfQXMl6HxfQuwMDuwDKCZ1kxDRGEePzXhj0yLCtt6AnbhkJnRMzzUH7cRcXwvPiqaveI4x9ieYsjnur4TAHI5xdN4iuuUXE5IIUHqTqiBYt3Ft1UP7Es1zjv84r0AvgiZSzTq9Q07A5bknFEeu7p1ct+V1rAJywnAfAgPRBiYMF+bHD8nIc645gUAhMt/VNo0JOVy6HO76X5Du0Zcfw0lvlPcvgcEIlnO78hVp63YdmI47G67kkxG4MSCuJvUCHs5VVA76Vx/hM0Hl1D9h3ViELBBxXoOWwdB/xh0nM5/xWx/dYYIsFnIY3ptmyJ+qDS/jLmtW5gK/oh03CBq9qY56Ov/0rn90RW9J+mOA8tj3/Q43R3SJ5DVL1Jz8AHKa61AstOeRqi1NCwXxViyKpYYS6kcOkSo47oykoT3Ua3Z1DG4CG4jgIrzAOSqYclKA/XMJ2j8jBVN1NNiLHfO4UXpWNEOUL6zgzZPoXXfZzC7UFeIyiPccYLvcTyeE1EHkGcXZzj+mFFpkUUUykk0jWmqGNON4kl7ZcI2X9XjkWCiRBi99Hb5oPxOme1FpFgjGY95Ar0z/V2fqc7qAUfiXouYt8WdIM1FXAZ/uJV3rkoY+9kGJ9FMQxoXEbRK1CTpkfhFE8kzGDr59M07v00W4HTQ/b1oIhaL8U1ithKvIX3X5/elqjuk3J6XW53KmCU09cpHuA5gvt3AL1J61KovmSSu+DbUPjtmWE+jEzScpyUZR6PTXLtL2KcX+21Og82qbtaikzycRbJeMaGf8XwKITxZpLyewQ9F7nkcIpJk+Qdz9SYIt/HRez7qpHqvqhGx3iKu1aDhEJuONQzpE9lcI37kuxryqmSc2kIMxUKJklFnSm5nCXwBg1hXI/C9mwBu5wX0+j4oI/1kIg0hSv+EYqGKFBZbWwSLtBnKFQQt7DZNmiVXmTDyc42uFYxrgHu/ztZAc9inv/FihqDbXfmcW+nMI63mNTdH2HMjPAaLKJ3IxtmmsUHAho+58wY57vl4ZFGMlL3O+I8rkfBUHRG9ZNjbE8uV3yFl+KwFMd8n+U9oozxnEaq+6Lu81trM3ASCtmD1tfWzm9UppmMXof6/ihiH9yRKzThM7ovzPwcXK8my+vkuqJ4NeZxMN4YuOi649832XUNwfU+NGIfWvXDkpxbGZEW70UY8s78C6GFfmtM543bjQQRsm2ISHJBf+7/ZZAGFRGCoMZkP00X4xQ6RIiQdKeyPd9I79tME77sexzvR7L0Otrkrrt5P0cUfhsh9LKtK+YmqT8ag8o04yWhICLBYCh3YN8DGV6n1kRPd4LL8MAmfMbiHBvpuixf9lzPVf465jsBz4E/hevOHMTnOhPdFYNW4L45aomBt0xiNssTGaY7ujb+m+QYlNP1Myj7tRHlJBs2MokvtbbJwtgEZR8DVX9oxHdunFMe43ZjtHWedW6IQUNX0q45iBsGYB7jCK47I9KzNsv71DTS+5+sXDbl/SUUWgjtvUocRhQu9WC6UjoB52Cg2+yIe6F7o7yJnrNdHtR0IQmF35xrRrW4+rJF5vJnGt6IZGBMwaVJ9mMKYlka14ty12Ndj+1N9v2r5yV5bqTfPzIoC7U5zlOIFYwD6Z6mEQgzvobv5R+N+M5Nc9KzOA0D3sY5/6GQY3IxTRJdUcH4mfcoPtuHHFeU5X0K1SC3OqGgWQ/ZsR0NfACm3r2ZxQtSm+RcdHFg0ORTTfCcZXkQCoXEPBqrkiRiDONEOnvb4I7P1XgJjJXAoMIhIfvWMYnpYI+lITzCGGvSXyciyrBjNgwG2XaMMCTow57ZRPmJtS0wGLRHDkUyukfmN+IzBO9ZsGJk3Pq8yIk3usQwK2Fpr87Cei/vZhG345z/MaNkQYSYKTUtkyLTypBHITsOCSlARVnmR7Lzj2qiMtLO85q0NNBShMsc86jDRjqjtRS2emauB7YlW2nvsDSu0xjLb4810WMzepnUMzbyBRYuw1iC5fj7oywFC54RnqTLTeP1jYN3WL9gmmDcBdfaOXV6W5bPx3PsVcDg2WCBpV/YcCmXQZVQEOH0M+ErkuXbg7FOI9+zvBUIBfSzwk2NvvfxEZVj2PKyE3IcD7jzo6YDbmYK76NOWNyqOolBaWwGUCQEq1LCiGEKXzZelAlsNd9rGvf7J1jdE+MrbkpDKLhjFIJvmtwR8vyYxrpGFt6EQAAE31eQZ7qFowzOHLQwO3qVPFofZVleFyNtVzOJhYV8Slnxfd6Iz1nmCYXZrTCvN4nYnutpUnNYjo4N2YduDyyXO7mA0uUzk5g1ESYKVmvkuKxGkbCC8z7CS9TdtFwXeDKPQg2fG4MiXzAN17iA+MdgxNPSvD5W8wwWlsM4mFQDt0uNkFBoxeCFPMDbdhNfyFyAlgHW6w9bfRDTkq5gi6Mx6OCJn9YoFDaI2J6PD8CMihAKhuXhiQJLm7cihELvRowDBppiwbJgut7rfE8guotbUTl1BX2d4wEJWwzrIJNYnTOd9UzQ/RUsjw5R9k2K4/Plsa4OuU8QghlVtUZIKDQxWFrU/YgT+urezeH1g+8/hAkFDNDCAKVbGulZO5v6eegY0DWzFeZ3n4jt+aiMxjCdwzxTqxZg2kStRtmN9Uu+R4ijlfsSxUIgtDATaU4rLKf+91eCLgIMlMV6H65nDF9LxBiIq2NeG4NTD3d+3xXjnHx11Qw2iVkta5pEdxwGa3akB6OGAh6LT6EbD+M0RpvEgmiLjJBQaEQO9n6/noeWNka4n2/CP/JyhEksw9sYg6s6m/opYnA3/tnK8hpLHUctU5uP6aqYRTHFMXwuyxZg+nxrwj8BXGbyPwZqRbZsg/Ej77Dl3Bq9XsZEd3sif+4wi3ehYXD0zSbebA6s5xF4ibAY1MgY5+Sr6+HSDM6B9+M+kxgwPNOItNBgxvTBy7Kzt+2ZPNwHxuLpiH1whW/TSM/rrg8Ppd7aViUrT1IBd83D/VBpR33lr0MBps8sEz7YrqgR3kOIhGAsBObz72Ua75PshVpWo3jSLL6kMqZ27x3jumgoHOP8xuBO15tW3AT25XeKFTSY8OGwyyh6RkYIAZQTdLVgfNduMmMSCvlmT89AoFJ/N0/3ui/JvsaaKumOtMfgvYpWlt/Jprwun6d7/tGM0mdhhHiE4MmXxwvpjnUSBjgtXLyXrc3bFdejEIj8sK9oHh/DDqBhFHxqfiJFR2OKQp9TTcLjti3jj4Hf+JDWydwGUYCvO06PEJho2J0oUyahkC+gnA/ytmGt/ny5OkcnESG7mIaLPeWz5RYwzbS+QUIQRlF9myvnsZUeVdkXGhADYeMQpudJKPSgJyEYv4MxHfgWygxVT4sJBX+MwENm8UHQGIi6Q4rruusuPGziu+7z1bU9KsW7gGe81iSmFH8VIf6Hx3huIaGQEVjRzB8B/3Se73lvxHa4oQ9uhGdewRMKrY3ZSYRgvgYXLkhSARZiHRLmev45D/fCGA3MblibvzE9c7cCTZemFgrVIUJtqkmsfeBzQpJrYvXNIY5