Джек Д. Швагер

Технический анализ: Полный курс


Скачать книгу

правило, скользящие средние рассчитываются на основе цен закрытия. Тем не менее можно рассчитывать скользящие средние цен открытия, максимумов, минимумов, а также средних значений дневных цен открытия, закрытия, максимума и минимума. Кроме того, скользящие средние можно строить не только на дневных графиках, но на графиках, основанных на другом временном интервале. В этом случае термин «цена закрытия» будет относиться к данному интервалу.

iVBORw0KGgoAAAANSUhEUgAAAj0AAANSCAYAAACORH86AAA4yklEQVR42u3dyW3jTLsGUMMrpfAvbhAKRGn0ADAOh8A0GAYjYBLKQCtfs1FlvC4XR0mevnMAotuaSFEU+ajGhwcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD4QX7//v34spx+/frVvvz79PLvceHxh5fHNPnxf/78+T97EQD4DqFnDDrPYTnPBZkx7BSPH/7+/fs/exK42y+z8STzUcv4y85ehx95LhlLbYYixDzPlfa83NdVHt/Ym8BdjEEknKgud17GdbT2Ogg9Qg/wWaHnXDnx3GsReuCHqlRXPY9tfGYe3xePvyy1AwK4degZ0smrXLqZMNNNPOcs9MB/w9h+p1Lacx7b+ozhJy+p8bJSHuDTQ8/kL63x9pnQM/WcRuiB/1zw6TaWAJ8FHuAzQs8w1dh4T+hJv+qEHnj4b3WQGM8JqTdXn84xsX3fOZUIjeGo0WML+KzQ083Uv28OPelX30Xogf/02D2H8Vwzng/GRU9O4KuEnvaWoafSo0PoAQC+ROhpbhl6Kj002jVdX8uxfcZfiz4tPvo4iaUUnzXWVFy/78H99vFPPu+U701J23XnANel7/9lf+1VMVe3fkXoOYZeG8eZ8JV7dAyhDUCu+++XhrUPz1+zNJWRZCcfn3qfHHasp4tddpfWU1mOO99f+dzjxuc24XNpt64znSi2vNd2zUk4H6/pOX1xnJzTbe013Z7zVAoT7VFe26KkxxwmqnTbW7z39F77sP4+Hk9b1zW+pyu+M28+3zx9xNoljsycjsfVz53r9n5Nm6Pw/vtwDL05njZMp7HpM8/n2j2f4dJ3JZzX8zE8TB3H4z7YGoDCd/BWy5vjY+vrx+MjnbO6vfszBZpTOH/N7b8+H59C5MOPHINjV+hZ8eV82jBW0GXqS7+xx0i/MF7Ic6Xb7WHHet6Unq1Yz+QYJ1vXW4St08Zt7sNnftm6znRR2fJez3OBO1xkt4wp1W1tIBtCxur9VB77W/dZPLYWej6+62G58J2sLcPG437q8z1sfW4lwG95bnfDwBOD5POW884Nxzu75Iv8juNlmAnJW8+ncZiS4xXTjVy7XIrjo73iHLv5OxH35451x9c5SQpCz9LrDRMHz1P4lVI9CZZf/KKkaO4C81QenOG5tTGL3vwayhMqptsvM11wu7LUIfw67he67079+lm93vjc4tfkecV4S0341fO0sM5LbZ3hvQ4LoaGd+7UZfrnV3msbtq96IloziWX4pT51MntK2/g0sR3H4pfi08b3/rglOOUL8J51VY77zcdjUZI3LFzMxtfuKiU93UL4eH3uLbqzp+Bc+4z7fL5ZOOdMVv+HsLG0L4d8zObjfefxclh5Pr2E0oyldZzXTvgazkXtxACT52JZ3B/xB8rKc92ldo4t9ud56/evci65hBKdvB+HrccI//HQk17rXDuZxwMwnFwnT/xrR4Zd8yup+AL3K4qRn/Ye+DMnx+OekW/Xrnem1KddWGez9XNYuIAPS3XiKfDU9lM7EXqnAvLjQuDppt5b8SvwuKUkYqYEYFioSu62jmxe6Sm5eMzf4nicK9Vb88t35jt0004PM+eR08R35Ly1RHJhOo7F0aZnjq/Zc9HMOt9t70LAb28w/UgT28BMDFi5al9ec95Z2p8rv3vDTCedpzWlVgg9k0XjUwdxOql2Ww6umZPA5Be7OIhX/eqZ+UKeVjy3myv2vtUJ/FYnkZmw1Oyc6qTfuY+6W+6XqQtAbX/MfAeqJ/B0HJ63BL5iHcPakYtn1tWvLAWpBpeV34P2igDf3PsX81z109SxcYcfNIsX+bSdl63VezP7cO647PcGkbljp9yfc4FsZRhv7vADr1tzzlnxg67bG8j4b4Wep62/RqcO3rmDa64dS+WLedoaHq79Qn5G6JkqYVv5BW8+MvRMfH6XpUbzWy4aM8fIMFOFsLpqYGfo6crPs2jP1NW2bS70LJWozbVjuGfomTsebxl65s5dU9+Zmee0XzD0tFvbys2EuuPDFSU9XyX0zJQwrQ49S+vYE6r4j4WeqQvg0gV3rppgoepi6ov9Wr1QzDS/KaV/p9CTTgLnpXYiXyH0zJQ8dDsvOO/260Jj6+YWxeVbQ08R2soGlse5XiJ7Q89So9R7hZ6FwHPT0LNQhXna+H3pvlro2VMdd00p9cJxd/zs0DNTLb61pOe085oo9Ag9133R5urJ507KC71M2soJu9sy9sJ3CT1lsPvqoWfqWFtZj7/q4jZzPE9+BhP7cVioZt0Setq9F/09oWdNL6p7hJ6FX+F3aRCa9s+xXKZCwZXVsh8aesJz372/HZ99c0XVYe3HxYeGnrmAu7KKPE+I26xov3XSmFno2XVBSgfZcWEZrqjSuUxUlbTxl/Xa3gvfqU1PJfgNtf2xt03PFaV0/Y7397TiOOnWnIhmSjiWSkbyWEHN0thWW0JPUbKwp23FptCT3sMl9NAaPiL0TByPX+rCEcbxuXyX0LNzqJCr93uxn6YaTn9I6Km0/xzutT9nSooHc8kJPWsaF+9ermm8W4zDcdqxT2a/kHmk13L5qNBTOQl0e8PL3vrrnSU93R2Ok6eVvZW6G5cuTIWe1+Mhfbf6axpCbgk9ZdVSGAzurqGn8iu8/YiGzBtKgeIwC5etPX+WQs+4L6fOCeNnNNMDr7u2IXcx4N7NqhWL88K7tnAfHHqeyjG0brE/yx7FMz+uznpuCT3XDOC1eWCqhVTe7a3a2dNrYsVyuXfoKS5GfR5t+MYlNpeF3lGbfjGnz2q4w3HSrggIN+15MbOey8SxcCmHbbh16Km0pWnmguYtQ095PH5mFUEOAitCzq1Cz9rzwvMtLtLFiNPnW55PZ86B3Zbu9LcMPcXjhtBd/qrQE0om+zA686X4Lg/lWEMIPXPjiJxzVcGeZW2V1EJD3u7GoWf3yKS3Cj3FY4YwsNxp78V+YWyKNkw30oSB3i4bG//OhZ7dx0k5gNnUdn1Q6JkbCLDZc/JcE3rmGu3fO/SUx2N+jx9d0hOmwJgKo3nqiebGbXquWboNx0Az873LA00214z1NfPZt58ReorHnIsRy68KPSt+rP8LPFubRvDfCT3Ptxgb4or30N6y4eTMF7JfMe/L+V6hZ+okcIPQc7hh1dPm0HOrYd6/QOg5LxwH5xv0oilLVA5zk//eM/SUv8IrI3ffPfSEeeSmRgZu4nbdoSHzZeV8UM87e4wd57polz3/brXfi/fafHToKdqmXYqpe24Vevow+vPcqNa96i2hZ21iPn5Avf1py/wv37Uhc9lAdWlMoq0X+1BFtjR/UZyw8fwFQ8/5k9v0PC6MkHveMejnVEnPodK26/ARoac43s6VKq+PGpxwshdn7eL7nXpvFd/5VeH5Fvu9so+OHxl6am3Trhm3a+Z89zgxF+DN2ofyH2vIfO+DpPhyXGZOgP2W2XK/YJf1GDAuM0PsX13CkRteFtVZTa5KKsZBuklD5luVwiw0qh9uNWPy2t5bM0MrrD4e50JPpW3X6gl7rwg9lzXH40eEnj3TLnyX0DNXbb/Q1u7q/V5cE+ZGf75H6ClLXJprByu91dQmtzyH8HO7rLcP9+2Z0Ze/7GYC2LcdnHDlOBanjxw6/ZZd1tdccDZ8dt0tJ9C9tsv6tRehle2HhpnB6u5R0rNm5OO7hp6FISuO3z30zHxXuntP/1Gsu9s6L9iVoWfx3LU19MSxjlYe98drehXzHx6ccMsMv1f+yjsvNejdUs31VUPPnuk5vlLo+YiTycLJtP3o0LMw6vjhBqHnvDBC8j1DT/NZc2/NvP7saO7fJfTMTPb6dO/Qs9Se54NCT3unaWnaK+d0M/+W0LPYg6rdc0GdOymXX5iFLt17Zqb+iqGnvccggx9c0vN4qyrIfOIt9+uKaTlOe8fyuNGIzFuHZZgLPWtm+L5L6PmIi+8VoefwA0LPcO/9nqux4/YXgWLP5M+3CD3d3GtcGXp6oUfoueeEo68HypoxSkLXzPPCPEmXuTCwMD1D+w1Dz+I0Gt8h9KxoeN6t6fEXRk8eJmZNb/eWjJSj286Mhr069GydAHXtmEBXNKy/NvS0nz3L+txFc+dcdd+ipGfpx8Ha/V40ku7DUAPtyuq3e4Wefml/Xhl6Fr9zC9dEU1EIPatHZu7z+Duhh8tjMaroMHfiqoSZYWa24dPeX/vfYRqK7xp6VrS7ee1mHE9OuV6+cpw87ZiT7JLH4Kg0PD4WDXWbG4Sew95pGZa6rH9S6Dl+duhZCM9DMZzDoXbsfPHQMxfc27jO8COgm+l52SyUuPblBKdz552Z3pjne5embx2csOxpuCJUtZ89DAt3aAQchspvF0po3kyzsKE31dwv7SEs5xUD8j2mE0e3MbxMXVyHheqzdueUDoeZuvjTNXOYXXES6e4Yli97Si9WzJb8OiJqcZxcNjZ2PK9cRx6VtbaOLb1HJtuwLYzyfdyxn88rJk7cfTzOVUWuDOFPH9Cualj52Q5Flc3earFhZxXjces6VwzFcS6O2+e59xe/JzOlXZe1542Z1zhf21P1isBbLQWrPL6rTdq6MHeZUp5vXrIzLAyPXhtivV+TchcG01o1enH8JRN+nZ0nftG9GzgqfSGbhQvr63gz4aLULYxTk7vFd5VRkruF930Og2Edi4tht7Ctl4nnHldscxxUcfeXNu3TNqzvvPBLu5saKyVcRK4dELFbERiuORZfSwzCIHj9iobF7977Qluj1893fFzYN6v2c2X+sWbP8ZjGLtl0LBcDEh63fIeuvYjsGDm9K+dDm9uf4Ufh2v3RFkM6bPoM4/Gy0P5tsvRyoSNHH0Zunns/1R+F6RjutnwHihKp095z7M79+TgTki7F4ITdwvdT4PnGpTyne06lUCTmLUP1vxv2e+1kpmsH6pta787JMJu9w9MXo4t2e5+747Ps71QN+rynODgMBjZsnNKhXVv1mqpPtxyLecqCcqTb44Z5nKrF/GuP5R37erhmuoR8TO2cPPh4TQi545gq76pu8kVwxXduCKXL5z3nyB3Hy7tSnxQy1pSItnm9K7e5WRjF+nija8elOD7aK86xm78TeX/ODPK46lxjKopvLrVjeNqzbK3PTF/AJvxCjiVMMZGfJoolH/MAeXNLZTTY49r3FIc937IvypP9Zzx362d5za+VHB62rm9tt+wwSeTscbK3Tn3mWBzCQH9Nrdh7z/uvvfc1n3Uu6bnmc917TK39vk2dE7Z876YaiV8579abzzS/t0o1xmnlOeGwdX/kz/wWx0vRuaMr3l9XTrGx9jNM++RQ7LN+6Ry/59pRlvTsPdft3J+P5YCr6b54DijPA1efayAO+30Iy6O9wlKbs3scJ+WxaI//vHPMD/9ePN5hnz3+169JvkEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADwg/z+/fvwsjwuPOZxzeMAAL5k2Pn161f3spxflv5lOdYeN96e7h8f1/358+f/7D0A4DuFnqeXEPMclvaaxwHAV7rAjb/Uh3svSgK+hzG87Aw9nb0HwHe6wN1ruUxVk/DlgvCpDDNjldfSsTM+z94D4Mv6+/fv/8Ywki5050pYGS9szcplmHj+cSzlqV04+bJhuCk+x3Nq59Omf4ci8DzZawB8pwtdX4aWLb/er30+X+54OKaQM0yU3p1TKZDPGAChxwXxZ/TmGkvqcolgKhU8KrkDQOgRegAAoWdxfJixSqUZ24jkJbUvOW4ZAG9sqzSWTlyz5JKMXNKxtIzrzAP2rV3H1u1dU7qyZVvz+xv/Xlriutc8Pj3ncWuJ0p59kAZJPOXjJe/bLZ9F3Nalz6MyiOMpH69x36Z9cLrmWC6P61TS1sTXTOtQ8gbw1UNPOpE/zbQdyb2/+rXbU+lOvWc5hrYtlxWP70J4G1Y8fsgXv9Q4eM02NUsjJNc+h8rSV/bVeWZ5/SzT++vTPpl6/CW9v8PD/sbTq/ZB2p52qrfgys/iHLd14fgZctCptHm65Kq/MBxE9VjZMoRDCmVzr5e3S8kqwFcNPenCMVQayLbpJF+7gHdLF9P0ul24OMeLUlyq4SpelFIPt7byWmXPpiaUOjyF0YqnAtxTccHvZi5q/dpGw2Hdi9sa1j3MrDuP43QMwaoN4ab2/s5rPqdKw+luJqRU98FMQGmL/XGeaYz9FEtfwvEz1I6NmX11WRHg47qPK4cQOFcCztNEr8nG2Qzgi4WedDIvL5p9rB6YKQFYfUENF8XxgnQK1RmnqdKamffYbXmPE9vebBgjZ/egf7UxmBa29Thxca1WJ029v2u7r0+UlJ3L4yKXgMyUwnVrjqMVQexNiEq3DSuDYr8QgPq543him9v4nMr37mwgUIAvFHpS6cl57cl64gL+tLHa5M2FM10wn7dMpTAxmONxY4hpFi6yl1tM71ArAVkIoYfKZ9LvqEZsrgw9tSq6odYOJqy/T5/zeWo7po65WpiaeH/HlcdDE9szhaqwYUuV5cSx8C4k6UAA8MVDz8QF+WljGLis+UUb26zEC8ZHhJ6tJT1FycKHhp6JUNBvLKn7sNBTbG8Tq8jK6qqlkLKixKlbeTxMjjyetneYaiO0t1RxogrY6OcAXyH0TJQoLJ6oJ17/aUM1Ty/03Cb0zASeDws9UyV4G6qrZqu4Yind1H7bEnpmSv7eHUMT2zmsmQ7ExK8AXyj0TJzQFy9cE1Up/Yrt6mqPFXr2hZ6i7c/5M0JPLIXZ2oao8tqXiaqrbi5s7Aw9Uz37mhXH+tTEr4fQjf20tzs8gNBzn9DTrP0Vu+JX8mJYmqqiuFXoiY2jy7FwbhR6+trYRXm9Hxl6isDTbX1/V4Sec96voZfXrka7axpfp/WcV1S7tlsn1p2otnpaUWWlVxbAN6ze2lViMxF6Ztv1xAv5xIXtFiU9W5etoWdp9vqudqG9dehJ+2uIVYVbG2pfEXqmxtY57Zxk9zzXQDgEo8tCSd6e0NPOHXdTpUEaJwN8z5Ke9oahZ6l66Th1Mb5h6LksLNeGnjhu0dQEoJc149fsDT3pvvz5DmH06Y8MPZfKmEvdnka7c9351zRgvib0LFVdTXwOQg/ADyrpGe5R0lNUZRw/snorvf7N2/SE0X5nqwhvFXqKEPKmOukDQ8857Ztj5X1tLvGZ289rGjDfuqQnlkJOhR7VWwA/p03PmrY5m58XLjDv2gx954bMYSqIyf19q9AT28+U7/UDQ8+bhsyVz2F1D665Qf2KKS0W25ndsE3PaUVJV+csBfAzem/trRboV/aU6SZG8/22vbeWxjq6UeiZrD775NDzbtymHb24qg2at/QK2xp61g6QODEX2+ZgB8DXGKdn2HqxXOrRkua8elzTnkfo2RR6LjODTJ4+cZyeq6ZfmHi/ly0DX24NPVPTSmxov6aKC+C7jcg8cfLvtzbwzRemdP+/qpj8azhckObmbfq2oWdFCLxV6GluNc3GnQYn3D2m0UxvvG7n87eOyFwNajM/DBYnKc3d+p3RAL7ONBSHjSVD3dzFtXitvpiZup25OHzLubcmLviXopHxR8y9dfoi01CsriZdU6Ky9rhfG3rSsbZnQt6pyUybGOTTZ5cbeZ+vnfQV4EdKF45jERLeXHBDr5nDjuf/61KcZjWvNSQeaj1x8mPTY7odvV0uU7+kU++nw1RpU21bx7+nLlxpoMBD0XPqkLarOiZLmpCy9vhmYibuU14mAuDrPgmvVd1vlXU/hjF3LrWShXT/Y7kPp7pfl+tYG3byxbvW7qW2HRP7t8uDQ+4MWP3abZ/qiVV8Xu3E8dnsGVW72Cd9mMn9cquZ7gF+aunOlsH2jmt6oswMojf1C7j2GkNaahe/ZmpKgjVtUdL6Lgvb+lqNEEbnvSy8x7YoxVp6fJ/fx5WDHl7iRW7lZ9IVpUZL++MSxrFZO3jgsCX4LMznFYNss6I0ZLYt0kKpWXOn78+bHwIP2xpcX+71+gD/GaG3yprlOHHSX/PcfqphaPqFn0swzhOlDWNAeJp5jfKCOSxMEnle+35DidTcci5CT7dmnxSh57zhs+jTc5qiSutx5brb4qK6tO5zEXrWvr+toWf1doTqwMnHrwk9RUnhpsbQUyVNaenDZ5Wn7NgVRlLp41NZohO+H0O6X9gB+I7VbekimKvGHtc8Nz9na9UK/+ngH0sKr20Ifbln8AjVrMet3w8AQOg5rWmU/hVCDwDAqqknao3aQ/uk7gZt4oQeAOBLlOaUbYKaa8KK0AMAPHyxdmLnynQTr72i9nbxFnoAgC9VrbXQ5bvf2/B9YngAoQcA+JSqrblxhfqtk3imXoJPqZTnMhGinspRkwEAPqq0py9G/n7aU8KzMCCiUh8A4EuU+Pwb3+aaEpg8HtTKxXhRAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA