В. А. Успенский

Апология математики (сборник статей)


Скачать книгу

в требовании дать ответ на этот вопрос и состоит проблема близнецов. (Напомним, что простым называется такое большее единицы целое число, которое делится без остатка только на само себя и на единицу.)

      10

      Было бы хорошо, если бы и некоторые гуманитарные тексты, в частности все тексты исторической науки, писались с такой же безоценочной бесстрастностью.

      11

      Talmy Leonard. Toward a Cognitive Semantics. Vol. 1. The MIT Press, 2000. P. 314. (http://linguistics.bufalo.edu/people/faculty/talmy/talmyweb/Volumel/chap5.pdf)

      12

      В оригинале: «The bike is near the house» и «The house is near the bike».

      13

      Математикам, впрочем, иногда нравится обыгрывать указанную омонимию в каламбурах: И до боли жаждет воли / Истомившийся от бега / По борелевскому полю / Измеримых по Лебегу. Те множества, которые являются измеримыми по Лебегу, действительно образуют борелевское поле, но бежать по нему, разумеется, невозможно.

      14

      Положение, принимаемое без доказательств (мат.). || Очевидная истина, утверждение, принимаемое на веру (книжн.) (Толковый словарь русского языка / Под ред. Д. Н. Ушакова. – М., 1935–1940.).

      15

      Крысин Л. П. Толковый словарь иноязычных слов. – 2-е изд., доп. – М., 2000.

      16

      Захаренко Е. Н., Комарова Л. Н., Нечаева И. В. Новый словарь иностранных слов. – М., 2003.

      17

      Задача для развлечения нематематика: продолжить последовательность чисел 1; 1; 2; 3; 5; 8; 13; 21; 34; 55; ….

      18

      Зализняк А. А. Лингвистика по А. Т. Фоменко // Успехи математических наук. 2000. Т. 55. Вып. 2. С. 162–188. И подробнее: Зализняк А. А. Из заметок о любительской лингвистике. – М., 2009. – 240 с.

      19

      Зализняк А. А. Похвала филологии. М., 2007. С. 79. А также: Зализняк А. А. Из заметок о любительской лингвистике. М., 2009. С. 210.

iVBORw0KGgoAAAANSUhEUgAAAaUAAANSCAYAAADF2tEmAAAKQ2lDQ1BJQ0MgcHJvZmlsZQAAeNqdU3dYk/cWPt/3ZQ9WQtjwsZdsgQAiI6wIyBBZohCSAGGEEBJAxYWIClYUFRGcSFXEgtUKSJ2I4qAouGdBiohai1VcOO4f3Ke1fXrv7e371/u855zn/M55zw+AERImkeaiagA5UoU8Otgfj09IxMm9gAIVSOAEIBDmy8JnBcUAAPADeXh+dLA//AGvbwACAHDVLiQSx+H/g7pQJlcAIJEA4CIS5wsBkFIAyC5UyBQAyBgAsFOzZAoAlAAAbHl8QiIAqg0A7PRJPgUA2KmT3BcA2KIcqQgAjQEAmShHJAJAuwBgVYFSLALAwgCgrEAiLgTArgGAWbYyRwKAvQUAdo5YkA9AYACAmUIszAAgOAIAQx4TzQMgTAOgMNK/4KlfcIW4SAEAwMuVzZdL0jMUuJXQGnfy8ODiIeLCbLFCYRcpEGYJ5CKcl5sjE0jnA0zODAAAGvnRwf44P5Dn5uTh5mbnbO/0xaL+a/BvIj4h8d/+vIwCBAAQTs/v2l/l5dYDcMcBsHW/a6lbANpWAGjf+V0z2wmgWgrQevmLeTj8QB6eoVDIPB0cCgsL7SViob0w44s+/zPhb+CLfvb8QB7+23rwAHGaQJmtwKOD/XFhbnauUo7nywRCMW735yP+x4V//Y4p0eI0sVwsFYrxWIm4UCJNx3m5UpFEIcmV4hLpfzLxH5b9CZN3DQCshk/ATrYHtctswH7uAQKLDljSdgBAfvMtjBoLkQAQZzQyefcAAJO/+Y9AKwEAzZek4wAAvOgYXKiUF0zGCAAARKCBKrBBBwzBFKzADpzBHbzAFwJhBkRADCTAPBBCBuSAHAqhGJZBGVTAOtgEtbADGqARmuEQtMExOA3n4BJcgetwFwZgGJ7CGLyGCQRByAgTYSE6iBFijtgizggXmY4EImFINJKApCDpiBRRIsXIcqQCqUJqkV1II/ItchQ5jVxA+pDbyCAyivyKvEcxlIGyUQPUAnVAuagfGorGoHPRdDQPXYCWomvRGrQePYC2oqfRS+h1dAB9io5jgNExDmaM2WFcjIdFYIlYGibHFmPlWDVWjzVjHVg3dhUbwJ5h7wgkAouAE+wIXoQQwmyCkJBHWExYQ6gl7CO0EroIVwmDhDHCJyKTqE+0JXoS+cR4YjqxkFhGrCbuIR4hniVeJw4TX5NIJA7JkuROCiElkDJJC0lrSNtILaRTpD7SEGmcTCbrkG3J3uQIsoCsIJeRt5APkE+S+8nD5LcUOsWI4kwJoiRSpJQSSjVlP+UEpZ8yQpmgqlHNqZ7UCKqIOp9aSW2gdlAvU4epEzR1miXNmxZDy6Qto9XQmmlnafdoL+l0ugndgx5Fl9CX0mvoB+nn6YP0dwwNhg2Dx0hiKBlrGXsZpxi3GS+ZTKYF05eZyFQw1zIbmWeYD5hvVVgq9ip8FZHKEpU6lVaVfpXnqlRVc1U/1XmqC1SrVQ+rXlZ9pkZVs1DjqQnUFqvVqR1Vu6k2rs5Sd1KPUM9RX6O+X/2C+mMNsoaFRqCGSKNUY7fGGY0hFsYyZfFYQtZyVgPrLGuYTWJbsvnsTHYF+xt2L3tMU0NzqmasZpFmneZxzQEOxrHg8DnZnErOIc4NznstAy0/LbHWaq1mrX6tN9p62r7aYu1y7Rbt69rvdXCdQJ0snfU6bTr3dQm6NrpRuoW623XP6j7TY+t56Qn1yvUO6d3RR/Vt9KP1F+rv1u/RHzcwNAg2kBlsMThj8MyQY+hrmGm40fCE4agRy2i6kcRoo9FJoye4Ju6HZ+M1eBc+ZqxvHGKsNN5l3Gs8YWJpMtukxKTF5L4pzZRrmma60bTTdMzMyCzcrNisyeyOOdWca55hvtm82/yNhaVFnMVKizaLx5balnzLBZZNlvesmFY+VnlW9VbXrEnWXOss623WV2xQG1ebDJs6m8u2qK2brcR2m23fFOIUjynSKfVTbtox7PzsCuya7AbtOfZh9iX2bfbPHcwcEh3WO3Q7fHJ0dcx2bHC866ThNMOpxKnD6VdnG2ehc53zNRemS5DLEpd2lxdTbaeKp26fesuV5RruutK10/Wjm7ub3K3ZbdTdzD3Ffav7TS6bG8ldwz3vQfTw91jicczjnaebp8LzkOcvXnZeWV77vR5Ps5wmntYwbcjbxFvgvct7YDo+PWX6zukDPsY+Ap96n4e+pr4i3z2+I37Wfpl+B/ye+zv6y/2P+L/hefIW8U4FYAHBAeUBvYEagbMDawMfBJkEpQc1BY0FuwYvDD4VQgwJDVkfcpNvwBfyG/ljM9xnLJrRFcoInRVaG/owzCZMHtYRjobPCN8Qfm+m+UzpzLYIiOBHbIi4H2kZmRf5fRQpKjKqLupRtFN0cXT3LNas5Fn7Z72O8Y+pjLk722q2cnZnrGpsUmxj7Ju4gLiquIF4h/hF8ZcSdBMkCe2J5MTYxD2J43MC52yaM5zkmlSWdGOu5dyiuRfm6c7Lnnc8WTVZkHw4hZgSl7I/5YMgQlAvGE/lp25NHRPyhJuFT0W+oo2iUbG3uEo8kuadVpX2ON07fUP6aIZPRnXGMwlPUit5kRmSuSPzTVZE1t6sz9lx2S05lJyUnKNSDWmWtCvXMLcot09mKyuTDeR55m3KG5OHyvfkI/lz89sVbIVM0aO0Uq5QDhZML6greFsYW3i4SL1IWtQz32b+6vkjC4IWfL2QsFC4sLPYuHhZ8eAiv0W7FiOLUxd3LjFdUrpkeGnw0n3LaMuylv1Q4lhSVfJqedzyjlKD0qWlQyuCVzSVqZTJy26u9Fq5YxVhlWRV72qX1VtWfyoXlV+scKyorviwRrjm4ldOX9V89Xlt2treSrfK7etI66Trbqz3Wb+vSr1qQdXQhvANrRvxjeUbX21K3nShemr1js20zcrNAzVhNe1bzLas2/KhNqP2ep1/XctW/a2rt77ZJtrWv913e/MOgx0VO97vlOy8tSt4V2u9RX31btLugt2PGmIbur/mft24R3dPxZ6Pe6V7B/ZF7+tqdG9s3K+/v7IJbVI2jR5IOnDlm4Bv2pvtmne1cFoqDsJB5cEn36Z8e+NQ6KHOw9zDzd+Zf7f1COtIeSvSOr91rC2jbaA9ob3v6IyjnR1eHUe+t/9+7zHjY3XHNY9XnqCdKD3x+eSCk+OnZKeenU4/PdSZ3Hn3TPyZa11RXb1nQ8+ePxd07ky3X/fJ897nj13wvHD0Ivdi2yW3S609rj1HfnD94UivW2/rZffL7Vc8rnT0Tes70e/Tf/pqwNVz1/jXLl2feb3vxuwbt24m3Ry4Jbr1+Hb27Rd3Cu5M3F16j3iv/L7a/eoH+g/qf7T+sWXAbeD4YMBgz8NZD+8OCYee/pT/04fh0kfMR9UjRiONj50fHxsNGr3yZM6T4aeypxPPyn5W/3nrc6vn3/3i+0vPWPzY8Av5i8+/rnmp83Lvq6mvOscjxx+8znk98ab8rc7bfe+477rfx70fmSj8QP5Q89H6Y8en0E/3Pud8/vwv94Tz+4A5JREAAAAZdEVYdFNvZnR3YXJlAEFkb2JlIEltYWdlUmVhZHlxyWU8AAAD/WlUWHRYTUw6Y29tLmFkb2JlLnhtcAAAAAAAPD94cGFja2V0IGJlZ2luPSLvu78iIGlkPSJXNU0wTXBDZWhpSHpyZVN6TlRjemtjOWQiPz4gPHg6eG1wbWV0YSB4bWxuczp4PSJhZG9iZTpuczptZXRhLyIgeDp4bXB0az0iQWRvYmUgWE1QIENvcmUgNS41LWMwMTQgNzkuMTUxNDgxLCAyMDEzLzAzLzEzLTEyOjA5OjE1ICAgICAgICAiPiA8cmRmOlJERiB4bWxuczpyZGY9Imh0dHA6Ly93d3cudzMub3JnLzE5OTkvMDIvMjItcmRmLXN5bnRheC1ucyMiPiA8cmRmOkRlc2NyaXB0aW9uIHJkZjphYm91dD0iIiB4bWxuczp4bXBNTT0iaHR0cDovL25zLmFkb2JlLmNvbS94YXAvMS4wL21tLyIgeG1sbnM6c3RSZWY9Imh0dHA6Ly9ucy5hZG9iZS5jb20veGFwLzEuMC9zVHlwZS9SZXNvdXJjZVJlZiMiIHhtbG5zOnhtcD0ia