Robert DeCourcy Ward

Practical Exercises in Elementary Meteorology


Скачать книгу

the tube to a height corresponding to the weight or pressure of the air, the vertical height of the top of the mercury column above the level of the mercury in the cistern, in inches and hundredths of an inch, being the barometer reading. At sea level the normal barometer reading is about 30 inches. There is an opening near the top of the cistern, at the back of the instrument, through which the air gains access to the mercury and holds up the mercury column. It will readily be seen that, as the mercury in the tube rises, the level of the mercury in the cistern falls, and vice versa, so that there is a varying relation between the two levels. In order to have the reading accurate, it is necessary that the surface of the mercury in the cistern should be just at the zero of the barometer scale when a reading is made. To accomplish this, the bottom of the cistern consists of a buckskin bag which may be raised or lowered by means of a thumb-screw, seen at the lower end of the instrument. The level of the mercury may thus be changed and adjusted to the top of a black line, marked on the outside of the cistern, and which indicates the zero of the scale. Before making a reading, the surface of the mercury in the cistern must be raised or lowered until it just reaches this black line. Then the top of the mercury column will give the pressure of the air. The reading is made on an aluminum scale at the top of the wooden back on which the tube is mounted, this scale being graduated both on the English and on the metric system. This barometer may be hung against the wall of a room.

      The aneroid barometer (Greek: without fluid), although less desirable in many ways than the mercurial, is nevertheless a useful instrument for rough observations. The aneroid is not good for careful scientific work, because its readings are apt to be rather inaccurate. To be of much value in indicating exact pressures, it should frequently be compared with and adjusted to a mercurial barometer. An ordinary aneroid barometer is shown in Fig. 6.

      Fig. 6.

      In this instrument the changes in atmospheric pressure are measured by their effects in altering the shape of a small metallic box, known as the vacuum chamber. The upper and lower surfaces of this box are made of thin circular sheets of corrugated German silver, soldered together around their outer edges, thus forming a short cylinder. From this the air is exhausted, and it is then hermetically sealed. A strong steel spring, inside or outside of the vacuum chamber, holds apart the corrugated surfaces, which tend to collapse, owing to the pressure of the external air upon them. An increase or decrease in the air pressure is accompanied by an approach, or a drawing apart, of the surfaces of the chamber. These slight movements are magnified by means of levers, a chain, and a spindle, and are made to turn an index hand or pointer on the face of the instrument. The outer margin of the face, underneath the glass, is graduated into inches and hundredths, and the pressure may thus be read at once.

      As the tension of the steel spring varies with the temperature, aneroids are usually compensated for temperature by having one of the levers made of two different metals, e.g., brass and iron, soldered together, or else by leaving a small quantity of air in the vacuum chamber. This air, when heated, expands, and thus tends to compensate for the weaker action of the spring, due to the higher temperature. At best, however, this compensation is but imperfect, and this fact, together with the friction of the different parts, the changes in the spring with age, and the need of frequent adjustments, makes aneroids rather inaccurate. They may be adjusted to mercurial barometers by means of a small screw, whose head may be found on the lower surface of the instrument. The words fair, stormy, etc., which frequently appear on the face of aneroid barometers, are of little use in foretelling weather changes, as no definite pressures always occur with the same weather conditions. The instrument should be tapped lightly a few times with the finger before a reading is made. The second pointer, which is often found in aneroids, is set by the observer on the position marked by the index hand when he makes his reading. The difference between the pressure marked by this set pointer and that shown by the index hand at the next observation is the measure of the change of pressure in the interval.

      Another column must now be added to the record book (preferably between the columns devoted to temperature and wind) to receive the “Pressure in Inches and Hundredths.”

      Is the pressure constant (i.e., are the readings always the same) or does it vary? If it varies, is there any apparent system in the variations? Is there a tendency to a daily maximum? To a daily minimum? If so, about what time do these occur, respectively? What is the average variation (in inches and hundredths) in the course of a day? What is the greatest difference in pressure which you have observed in a day? What is the least? Does the pressure seem to vary more or less in the colder months than in the warmer? Has the height of the mercury column any relation to the weather? Are we likely to have rainy weather with rising barometer? Is the velocity of the wind related to the pressure in any way? How? Can you make any general rules for weather prediction based on the action of the barometer? What rules?

      Tabulation of Observations.—The tables suggested in the preceding chapter can be used unchanged with the simple instruments just described.

      Summary of Observations.—At the end of each month summarize your instrumental observations in the following way:—

      Temperature.—Add together all your temperature readings; divide their sum by the total number of observations of temperature, and the quotient will give you a sufficiently accurate mean or average temperature for the month in question. It is to be noted that the mean monthly temperatures obtained from these observations will be much more accurate if the thermometer readings are made at 7 A.M. and 7 P.M., at 8 A.M. and 8 P.M., etc., and the mean of these is taken; or if the mean is derived from the maximum and the minimum temperatures, discussed in Chapter III. This mean temperature should be written at the bottom of the temperature column, and marked “Mean.” The mean monthly temperature is one of the important meteorological data in considering the climatic conditions of any place.

      Wind.—Determine the frequency of the different wind directions by counting the total number of times the wind has blown from N., NE., E., etc., during the month. The wind which you have observed the greatest number of times is the prevailing wind. It may, of course, happen that two or three directions have been observed an equal number of times. The number of calms should also be recorded.

       Rainfall.—The total monthly precipitation is obtained by adding together all the separate amounts of rainfall noted in your record book, and expressing the total, in inches and hundredths, at the bottom of the rainfall column. You now have the means for comparing one month’s rainfall with that of another month, and of seeing how these amounts vary.

      Examine carefully also your non-instrumental observations. See whether you can draw any general conclusions as to the greater prevalence of cloud, or of rain or snow, in one month than in another. Did the last month have more high winds than the one before? Or than the average? Were the temperature changes more sudden and marked? Was there more or less precipitation than in previous months?

      CHAPTER III.

      ADVANCED INSTRUMENTAL OBSERVATIONS

      The instruments for more advanced study are the following: maximum and minimum thermometers, wet and dry-bulb thermometers, sling psychrometer, standard barometer, thermograph, barograph, and anemometer.

      Fig. 7.

      Maximum and minimum thermometers are usually mounted together on a board, as shown in Fig. 7, the lower one of the two being the maximum, and the upper the minimum. In the view of the instrument shelter (Fig. 2), these thermometers are seen on the left. The minimum thermometer, when attached to its support, is either exactly horizontal or else slopes downward somewhat towards the bulb end, as shown in Fig. 7. These instruments, as their names imply, register the highest and the lowest temperatures, respectively, which occur during each day of 24 hours. The maximum thermometer is filled with mercury. Its tube is narrowed just above the bulb, in such a way that the mercury passes through the constriction with some difficulty. As the temperature rises, the mercury, in expanding, is forced out from the bulb through this narrow passage. When the temperature falls, however, the mercury above this