Льюис Кэрролл

The Mathematical Works of Lewis Carroll


Скачать книгу

his genial friend. When this result has been reached, he may safely go on to the next Chapter.

       COUNTERS.

      Table of Contents

      Let us agree that a Red Counter, placed within a Cell, shall mean “This Cell is occupied” (i.e. “There is at least one Thing in it”).

      Let us also agree that a Red Counter, placed on the partition between two Cells, shall mean “The Compartment, made up of these two Cells, is occupied; but it is not known whereabouts, in it, its occupants are.” Hence it may be understood to mean “At least one of these two Cells is occupied: possibly both are.”

      Our ingenious American cousins have invented a phrase to describe the condition of a man who has not yet made up his mind which of two political parties he will join: such a man is said to be “sitting on the fence.” This phrase exactly describes the condition of the Red Counter.

      Let us also agree that a Grey Counter, placed within a Cell, shall mean “This Cell is empty” (i.e. “There is nothing in it”).

      [The Reader had better provide himself with 4 Red Counters and 5 Grey ones.]

       REPRESENTATION OF PROPOSITIONS.

      Table of Contents

      § 1.

       Introductory.

      Henceforwards, in stating such Propositions as “Some x-Things exist” or “No x-Things are y-Things”, I shall omit the word “Things”, which the Reader can supply for himself, and shall write them as “Some x exist” or “No x are y”.

      [Note that the word “Things” is here used with a special meaning, as explained at p. 23.]

      A Proposition, containing only one of the Letters used as Symbols for Attributes, is said to be ‘Uniliteral’.

      [For example, “Some x exist”, “No y′ exist”, &c.]

      A Proposition, containing two Letters, is said to be ‘Biliteral’.

      [For example, “Some xy′ exist”, “No x′ are y”, &c.]

      A Proposition is said to be ‘in terms of’ the Letters it contains, whether with or without accents.

      [Thus, “Some xy′ exist”, “No x′ are y”, &c., are said to be in terms of x and y.]

      § 2.

       Representation of Propositions of Existence.

      Let us take, first, the Proposition “Some x exist”.

      [Note that this Proposition is (as explained at p. 12) equivalent to “Some existing Things are x-Things.”]

      This tells us that there is at least one Thing in the North Half; that is, that the North Half is occupied. And this we can evidently represent by placing a Red Counter (here represented by a dotted circle) on the partition which divides the North Half.

      [In the “books” example, this Proposition would be “Some old books exist”.]

      Similarly we may represent the three similar Propositions “Some x′ exist”, “Some y exist”, and “Some y′ exist”.

      [The Reader should make out all these for himself. In the “books” example, these Propositions would be “Some new books exist”, &c.]

      Let us take, next, the Proposition “No x exist”.

      This tells us that there is nothing in the North Half; that is, that the North Half is empty; that is, that the North-West Cell and the North-East Cell are both of them empty. And this we can represent by placing two Grey Counters in the North Half, one in each Cell.

      [The Reader may perhaps think that it would be enough to place a Grey Counter on the partition in the North Half, and that, just as a Red Counter, so placed, would mean “This Half is occupied”, so a Grey one would mean “This Half is empty”.

      This, however, would be a mistake. We have seen that a Red Counter, so placed, would mean “At least one of these two Cells is occupied: possibly both are.” Hence a Grey one would merely mean “At least one of these two Cells is empty: possibly both are”. But what we have to represent is, that both Cells are certainly empty: and this can only be done by placing a Grey Counter in each of them.

      In the “books” example, this Proposition would be “No old books exist”.]

      Similarly we may represent the three similar Propositions “No x′ exist”, “No y exist”, and “No y′ exist”.

      [The Reader should make out all these for himself. In the “books” example, these three Propositions would be “No new books exist”, &c.]

      Let us take, next, the Proposition “Some xy exist”.

      This tells us that there is at least one Thing in the North-West Cell; that is, that the North-West Cell is occupied. And this we can represent by placing a Red Counter in it.

      [In the “books” example, this Proposition would be “Some old English books exist”.]

      Similarly we may represent the three similar Propositions “Some xy′ exist”, “Some x′y exist”, and “Some x′y′ exist”.

      [The Reader should make out all these for himself. In the “books” example, these three Propositions would be “Some old foreign books exist”, &c.]

      Let us take, next, the Proposition “No xy exist”.

      This tells us that there is nothing in the North-West Cell; that is, that the North-West Cell is empty. And this we can represent by placing a Grey Counter in it.

      [In the “books” example, this Proposition would be “No old English books exist”.]

      Similarly we may represent the three similar Propositions “No xy′ exist”, “No x′y exist”, and “No x′y′ exist”.

      [The Reader should make out all these for himself. In the “books” example,