то его введение, скорее всего, продиктовано двумя факторами. Математики времен Хорезми не признавали существование отрицательных величин. «Восстановление» позволяло привести уравнение к такому виду, чтобы обе его части были положительными. Кроме того, с помощью этого приема уравнения можно было привести к одному из шести канонических видов, алгоритм решения которых заранее известен. Таким образом, можно сказать, что, предложив свои алгебраические методы решения уравнений, Хорезми смог свести большинство задач к некоей стандартной форме, абстрагируясь от конкретных условий.
Затем математик знакомит читателя с алгоритмами решения уравнений, приведенных к стандартному виду. Решать подобные задачи умели еще древнегреческие ученые. Но они делали это исключительно с помощью геометрических методов. Одна из основных заслуг Хорезми состоит в том, что он в своей работе впервые стал пользоваться исключительно алгебраическими методами, приводя геометрические решения уравнений только для доказательства правильности своих вычислений.
Далее Хорезми рассматривает возможность применения арифметических действий к алгебраическим выражениям. Например, он демонстрирует, каким образом следует умножать выражение типа: (a + bx) (c + dx).
Следующая часть «Книги о восстановлении и противопоставлении» содержит примеры использования методов, изложенных выше, для вычисления площадей и объемов геометрических фигур и тел.
Заключительный раздел книги еще раз подчеркивает ее практическую направленность. В нем рассматриваются сложные исламские законы наследования имущества. Правда, с точки же зрения математики этот раздел особого интереса не представляет, так как используемые в нем расчеты редко выходят за рамки линейных уравнений.
К числу достоинств «Книги о восстановлении и противопоставлении» следует отнести и более точное, чем у предшествующих авторов, определение числа я. Так Архимед для определения значения этой константы пользовался отношением: 22/7 (3,1429). Индусы использовали еще более грубое приближение: √10 (3,1623). Хорезми использует гораздо более точное значение числа π: 3,1416. Как видим, это значение в точности совпадает с истинным (3,141592), принимая во внимание округление до четырех знаков после запятой. Правда, исследователи полагают, что это значение получено не самим Хорезми, а взято им из какого-то более раннего, скорее всего, греческого источника.
Помимо «Китаб аль-джебр валь-мукабала» до наших дней дошли сведения еще о нескольких трудах Хорезми. Так, он написал трактат об индо-арабских цифрах. В этой работе Хорезми описывает индусскую систему исчисления, основанную на использовании цифр 1, 2, 3, 4, 5, 6, 7, 8, 9 и 0. Вероятно, именно Хорезми впервые использовал ноль в качестве обозначающего разряд символа. Оригинальный текст этой книги был утерян, и она дошла до нас в латинском переводе «Algoritmi de numéro Indorum». Именно благодаря этому переводу имя Хорезми и превратилось, как мы уже упоминали, в термин «алгоритм».
Как и большинство ученых тех лет, Хорезми не ограничивался только математикой. Он также был одним из самых известных астрономов своего времени. Им был составлен «Зидж ас-Синд-Хинд» (не следует путать этот труд с «Зиджем» Улугбека). Эта работа была основана на тексте, который