Scott H. Young

Ultralearning


Скачать книгу

at a web development firm but wanted to make faster progress. She took on an ultralearning project to learn copywriting. After taking the initiative and showing her boss what she could do, she was able to get a promotion. By choosing a valuable skill and focusing on quickly developing proficiency, you can accelerate your normal career progression.

      Learning is often the major obstacle to transitioning to the career you want to have. Vishal Maini, for instance, was comfortable in his marketing role in the tech world. But he dreamed of being more closely involved with artificial intelligence research. Unfortunately, that was a deep technical skill set that he hadn’t acquired. Through a careful six-month ultralearning project, however, he was able to develop strong enough skills that he could switch fields and get a job working in the field he wanted.

      Finally, an ultralearning project can augment the other skills and assets you’ve cultivated in your work. Diana Fehsenfeld worked as a librarian for years in her native New Zealand. Facing government cutbacks and rapid technologization of her field, she was worried that her professional experience might not be enough to keep up. As a result, she undertook two ultralearning projects, one to learn statistics and the programming language R and another on data visualization. Those skills were in demand in her industry, and adding them to her background as a librarian gave her the tools to go from bleak prospects to being indispensable.

      BEYOND BUSINESS: THE CALL TO ULTRALEARNING

      Ultralearning is a potent skill for dealing with a changing world. The ability to learn hard things quickly is going to become increasingly valuable, and thus it is worth developing to whatever extent you can, even if it requires some investment first.

      Professional success, however, was rarely the thing that motivated the ultralearners I met—including those who ended up making the most money from their new skills. Instead it was a compelling vision of what they wanted to do, a deep curiosity, or even the challenge itself that drove them forward. Eric Barone didn’t pursue his passion in solitude for five years to become a millionaire but because he wanted the satisfaction of creating something that perfectly matched his vision. Roger Craig didn’t want to go on Jeopardy! to win prize money but to push himself to compete on the show he had loved since he was a child. Benny Lewis didn’t learn languages to become a technical translator, or later a popular blogger, but because he loved traveling and interacting with the people he met along the way. The best ultra learners are those who blend the practical reasons for learning a skill with an inspiration that comes from something that excites them.

      There’s an added benefit to ultralearning that transcends even the skills one learns with it. Doing hard things, particularly things that involve learning something new, stretches your self-conception. It gives you confidence that you might be able to do things that you couldn’t do before. My feeling after my MIT Challenge wasn’t just a deepened interest in math and computer science but an expansion in possibility: If I could do this, what else could I do that I was hesitant to try before? Learning, at its core, is a broadening of horizons, of seeing things that were previously invisible and of recognizing capabilities within yourself that you didn’t know existed. I see no higher justification for pursuing the intense and devoted efforts of the ultralearners I’ve described than this expansion of what is possible. What could you learn if you took the right approach to make it successful? Who could you become?

      WHAT ABOUT TALENT? THE TERENCE TAO PROBLEM

      Terence Tao is smart. By age two, he had taught himself to read. At age seven, he was taking high school math classes. By seventeen, he had finished his master’s thesis. It was titled “Convolution Operators Generated by Right-Monogenic and Harmonic Kernels.” After that, he got a PhD from Princeton, won the coveted Fields Medal (called by some the “Nobel Prize for mathematics”), and is considered to be one of the best mathematical minds alive today. Though many mathematicians are extreme specialists—rare orchids adapted to thrive only on a particular branch of the mathematical tree—Tao is phenomenally diverse. He regularly collaborates with mathematicians and makes important contributions to distant fields. This virtuosity caused one colleague to liken his ability to “a leading English-language novelist suddenly producing the definitive Russian novel.”

      What’s more, there doesn’t seem to be an obvious explanation for his feats. He was precocious, certainly, but his success in mathematics didn’t come from aggressively overbearing parents pushing him to study. His childhood was filled playing with his two younger brothers, inventing games with the family’s Scrabble board and mah-jongg tiles, and drawing imaginary maps of fantasy terrain. Normal kid stuff. Nor does he seem to have a particularly innovative studying method. As noted in his profile in the New York Times, he coasted on his intelligence so far that, upon reaching his PhD, he fell back “on his usual test-prep strategy: last-minute cramming.” Although that approach faltered once he reached the pinnacle of his field, the fact that he breezed through classes for so long points to a powerful mind rather than some unique strategy. Genius is a word thrown around too casually, but in Tao’s case the label certainly sticks.

      Terence Tao and other naturally gifted learners present a major challenge for the universality of ultralearning. If people like Tao can accomplish so much without aggressive or inventive studying methods, why should we bother investigating the habits and methods of other impressive learners? Even if the feats of Lewis, Barone, or Craig don’t reach the level of Tao’s brilliance, perhaps their accomplishments also are due to some hidden intellectual ability that normal people lack. If this were so, ultralearning might be something interesting to examine but not something you could actually replicate.

      PUTTING TALENT ASIDE

      What role does natural talent play? How can we examine what causes someone’s success when the shadow of intelligence and innate gifts looms over us? What do stories like Tao’s mean for mere mortals who just want to improve their capacity to learn?

      The psychologist K. Anders Ericsson argues that particular types of practice can change most attributes necessary for becoming an expert-level performer with the exception of the innate traits of height and body size. Other researchers are less optimistic about the malleability of our natures. Many argue that a substantial proportion, perhaps most, of our intelligence is genetically derived. If intelligence comes mostly from genes, why not use that to explain ultralearning instead of ultralearners’ use of a more effective method or strategy? Tao’s success in mathematics doesn’t seem to be owed to something easily replicable by normal human beings, so why assume that any of the ultralearners are any different?

      I take a middle position between those two extremes. I think that natural talents exist and that they undoubtedly influence the results we see (especially at extreme levels, as in the case of Tao). I also believe that strategy and method matter, too. Throughout this book, I will cover science showing how making changes to how you learn can impact your effectiveness. Each of the principles is something that, if applied appropriately, will make you a better learner regardless of whether your starting point is dull or brilliant.

      My approach in telling stories for this book, therefore, will not be to try to determine what the sole cause is of someone’s intellectual success. Not only is this impossible, but it isn’t particularly useful. Instead, I’m going to use stories and anecdotes to illustrate and isolate what are the most practical and useful things you can do to improve how you learn. The ultralearners I mention should serve as exemplars you can use to see how a principle applies in practice, not a guarantee that you can achieve an identical result with identical effort.

      FINDING TIME FOR ULTRALEARNING

      Another doubt that may have formed in your mind when reading so far is asking how you’ll find time to do these intensive learning projects. You may worry that this advice won’t apply to you because you already have work, school, or family commitments that prevent you from throwing yourself into learning full-time.

      In practice, however, this usually isn’t a problem. There are three main ways you can apply the ideas of ultralearning, even if you have to manage other commitments and challenges in your life: new part-time projects, learning sabbaticals, and reimagining existing learning efforts.

      The first way is by pursuing ultralearning part-time. The most dramatic examples of learning