окончательную теорему, из которой можно будет приемлемым образом выводить математические описания всех физических событий.
Единственное известное мне следствие теоремы Гёделя в психологии – это неписанное правило в умах некоторых терапевтов, таких как я сам, что человеческая раса непоследовательна и противоречива. Верно, что арифметические операции придают сновидениям и измененным состояниям сознания больше логики, чем кажется на первый взгляд, но эта логика – в большей степени общий принцип, нежели неизменный закон.
Первичные и вторичные качества материи
Примерно в тот же период, когда были открыты или придуманы мнимые числа, Галилей в 1623 г. провел различие между «первичными» и «вторичными» качествами материи6. Он называл первичными качествами материи те, которые можно измерять и описывать с помощью действительных чисел (например, 4 килограмма, 10 километров, 60 секунд). Согласно Галилею вторичные качества (например, любовь или цвет) не могут быть сведены к объективным измерениям и, следовательно, находятся вне сферы науки.
С точки зрения нашего теперешнего обсуждения представляется, что первичные и вторичные качества, о которых говорил Г алилей, сходны с тем, как я использую термины «общепринятая» и «необщепринятая реальность», и с тем, что имеет в виду Альберт Эйнштейн в цитате из его книги по теории относительности, приводившейся в первой главе:
… определенные чувственные восприятия разных людей соответствуют друг другу, в то время как для других чувственных восприятий подобное соответствие установить невозможно7.
Галилей жил в поворотный момент в истории западной цивилизации, во времена, когда происходило отделение количественных характеристик материи от чувств по отношению к ней. История западной цивилизации показывает, что наука шла в направлении, предсказанном Галилеем, и отвергала качества переживаний НОР. Тогда ученые решили, и считают так и поныне, что мнимые числа – это нечто вроде галилеевых вторичных качеств, они не имеют непосредственного физического смысла и не входят в сферу науки.
Это сопротивление, отчасти, было обусловлено тем, что в эпоху Возрождения росло разделение между материей и душой, между физической и нефизической сферами. Мнимые числа появились как раз тогда, когда физика и математика отчаянно пытались отделиться от религии и таинств алхимии, бывшей сочетанием химии и медитации, психологии и физики. Это разделение было чрезвычайно полезным, но теперь настало время для воссоединения. История мнимых чисел подсказывает, как будет происходить это воссоединение.
Математика мнимых чисел
История развития мнимых чисел весьма интересна, так как она следует по пути постоянных (и не вполне успешных) попыток избавиться от «вторичных качеств» природы. В XVII в. математики Джон Уоллис (1616-1703) и Готфрид Лейбниц (1646-1716), наряду с другими, обдумывали проблему квадратного корня отрицательных чисел. Они знали, что если взять квадрат с площадью, равной 1, то квадратный