is only half as much again as that of water. Instead of being far denser than the nearest planet, it is but one-fifth as dense.
While these anomalies render untenable the position that the relative specific gravities of the planets are direct indications of nebular condensation; it by no means follows that they negative it. Several causes may be assigned for these unlikenesses:—1. Differences among the planets in respect of the elementary substances composing them; or in the proportions of such elementary substances, if they contain the same kinds. 2. Differences among them in respect of the quantities of matter they contain; for, other things equal, the mutual gravitation of molecules will make a larger mass denser than a smaller. 3. Differences of temperatures; for, other things equal, those having higher temperatures will have lower specific gravities. 4. Differences of physical states, as being gaseous, liquid, or solid; or, otherwise, differences in the relative amounts of the solid, liquid, and gaseous matter they contain.
It is quite possible, and we may indeed say probable, that all these causes come into play, and that they take various shares in the production of the several results. But difficulties stand in the way of definite conclusions. Nevertheless, if we revert to the hypothesis of nebular genesis, we are furnished with partial explanations if nothing more.
In the cooling of celestial bodies several factors are concerned. The first and simplest is the one illustrated at every fire-side by the rapid blackening of little cinders which fall into the ashes, in contrast with the long-continued redness of big lumps. This factor is the relation between increase of surface and increase of content: surfaces, in similar bodies, increasing as the squares of the dimensions while contents increase as their cubes. Hence, on comparing the Earth with Jupiter, whose diameter is about eleven times that of the Earth, it results that while his surface is 125 times as great, his content is 1390 times as great. Now even (supposing we assume like temperatures and like densities) if the only effect were that through a given area of surface eleven times more matter had to be cooled in the one case than in the other, there would be a vast difference between the times occupied in concentration. But, in virtue of a second factor, the difference would be much greater than that consequent on these geometrical relations. The escape of heat from a cooling mass is effected by conduction, or by convection, or by both. In a solid it is wholly by conduction; in a liquid or gas the chief part is played by convection—by circulating currents which continually transpose the hotter and cooler parts. Now in fluid spheroids—gaseous, or liquid, or mixed—increasing size entails an increasing obstacle to cooling, consequent on the increasing distances to be travelled by the circulating currents. Of course the relation is not a simple one: the velocities of the currents will be unlike. It is manifest, however, that in a sphere of eleven times the diameter, the transit of matter from centre to surface and back from surface to centre, will take a much longer time; even if its movement is unrestrained. But its movement is, in such cases as we are considering, greatly restrained. In a rotating spheroid there come into play retarding forces augmenting with the velocity of rotation. In such a spheroid the respective portions of matter (supposing them equal in their angular velocities round the axis, which they will tend more and more to become as the density increases), must vary in their absolute velocities according to their distances from the axis; and each portion cannot have its distance from the axis changed by circulating currents, which it must continually be, without loss or gain in its quantity of motion: through the medium of fluid friction, force must be expended, now in increasing its motion and now in retarding its motion. Hence, when the larger spheroid has also a higher velocity of rotation, the relative slowness of the circulating currents, and the consequent retardation of cooling, must be much greater than is implied by the extra distances to be travelled.
And now observe the correspondence between inference and fact. In the first place, if we compare the group of the great planets, Jupiter, Saturn, and Uranus, with the group of the small planets, Mars, Earth, Venus, and Mercury, we see that low density goes along with great size and great velocity of rotation, and that high density goes along with small size and small velocity of rotation. In the second place, we are shown this relation still more clearly if we compare the extreme instances—Saturn and Mercury. The special contrast of these two, like the general contrast of the groups, points to the truth that low density, like the satellite-forming tendency, is associated with the ratio borne by centrifugal force to gravity; for in the case of Saturn with his many satellites and least density, centrifugal force at the equator is nearly 1⁄6th of gravity, whereas in Mercury with no satellite and greatest density centrifugal force is but 1⁄360th of gravity.
There are, however, certain factors which, working in an opposite way, qualify and complicate these effects. Other things equal, mutual gravitation among the parts of a large mass will cause a greater evolution of heat than is similarly caused in a small mass; and the resulting difference of temperature will tend to produce more rapid dissipation of heat. To this must be added the greater velocity of the circulating currents which the intenser forces at work in larger spheroids will produce—a contrast made still greater by the relatively smaller retardation by friction to which the more voluminous currents are exposed. In these causes, joined with causes previously indicated, we may recognize a probable explanation of the otherwise anomalous fact that the Sun, though having a thousand times the mass of Jupiter, has yet reached as advanced a stage of concentration. For the force of gravity in the Sun, which at his surface is some ten times that at the surface of Jupiter, must expose his central parts to a pressure relatively very intense; producing, during contraction, a relatively rapid genesis of heat. And it is further to be remarked that, though the circulating currents in the Sun have far greater distances to travel, yet since his rotation is relatively so slow that the angular velocity of his substance is but about one-sixtieth of that of Jupiter's substance, the resulting obstacle to circulating currents is relatively small, and the escape of heat far less retarded. Here, too, we may note that in the co-operation of these factors, there seems a reason for the greater concentration reached by Jupiter than by Saturn, though Saturn is the elder as well as the smaller of the two; for at the same time that the gravitative force in Jupiter is more than twice as great as in Saturn, his velocity of rotation is very little greater, so that the opposition of the centrifugal force to the centripetal is not much more than half.
But now, not judging more than roughly of the effects of these several factors, co-operating in various ways and degrees, some to aid concentration and others to resist it, it is sufficiently manifest that, other things equal, the larger nebulous spheroids, longer in losing their heat, will more slowly reach high specific gravities; and that where the contrasts in size are so immense as those between the greater and the smaller planets, the smaller may have reached relatively high specific gravities when the greater have reached but relatively low ones. Further, it appears that such qualification of the process as results from the more rapid genesis of heat in the larger masses, will be countervailed where high velocity of rotation greatly impedes the circulating currents. Thus interpreted then, the various specific gravities of the planets may be held to furnish further evidences supporting the Nebular Hypothesis.
Increase of density and escape of heat are correlated phenomena, and hence in the foregoing section, treating of the respective densities of the celestial bodies in connexion with nebular condensation, much has been said and implied respecting the accompanying genesis and dissipation of heat. Quite apart, however, from the foregoing arguments and inferences, there is to be noted the fact that in the present temperatures of the celestial bodies at large we find additional supports to the hypothesis; and these, too, of the most substantial character. For if, as is implied above, heat must inevitably be generated by the aggregation of diffused matter, we ought to find in all the heavenly bodies, either present high temperatures or marks of past high temperatures. This we do, in the places and in the degrees which the hypothesis requires.
Observations showing that as we descend below the Earth's surface there is a progressive increase of heat, joined with the conspicuous evidence furnished by volcanoes, necessitate the conclusion that the temperature is very high at great depths. Whether, as some believe, the interior of the Earth is still molten, or whether, as Sir William Thomson contends, it must be solid; there is agreement in the inference that its heat is intense. And it has been further shown that the rate at which the temperature increases on descending below the surface, is such as would be found in a mass which had been cooling for