to diminish it, must not be allowed to blind the public to his defects as a man of science. The truth is, he was so far committed to a foregone conclusion, that he could not become a philosophical geologist. He might be aptly described as a theologian studying geology. The dominant idea with which he wrote, may be seen in the titles of two of his books—Footprints of the Creator—The Testimony of the Rocks. Regarding geological facts as evidence for or against certain religious conclusions, it was scarcely possible for him to deal with geological facts impartially. His ruling aim was to disprove the Development Hypothesis, the assumed implications of which were repugnant to him; and in proportion to the strength of his feeling, was the one-sidedness of his reasoning. He admitted that "God might as certainly have originated the species by a law of development, as he maintains it by a law of development;—the existence of a First Great Cause is as perfectly compatible with the one scheme as with the other." Nevertheless, he considered the hypothesis at variance with Christianity; and therefore combated with it. He apparently overlooked the fact, that the doctrines of geology in general, as held by himself, had been rejected by many on similar grounds; and that he had himself been repeatedly attacked for his anti-Christian teachings. He seems not to have perceived that, just as his antagonists were wrong in condemning as irreligious, theories which he saw were not irreligious; so might he be wrong in condemning, on like grounds, the Theory of Evolution. In brief, he fell short of that highest faith which knows that all truths must harmonize; and which is, therefore, content trustfully to follow the evidence whithersoever it leads.
Of course it is impossible to criticize his works without entering on this great question to which he chiefly devoted himself. The two remaining doctrines to be here discussed, bear directly on this question; and, as above said, we propose to treat them in connexion with Hugh Miller's name, because, throughout his reasonings, he assumes their truth. Let it not be supposed, however, that we shall aim to prove what he has aimed to disprove. While we purpose showing that his geological arguments against the Development Hypothesis are based on invalid assumptions; we do not purpose showing that the geological arguments urged in support of it are based on valid assumptions. We hope to make it apparent that the geological evidence at present obtained, is insufficient for either side; further, that there seems little probability that sufficient evidence will ever be obtained; and that if the question is eventually decided, it must be decided on other than geological grounds.
The first of the current doctrines to which we have just referred, is, that there occur in the serial records of former life on our planet, two great blanks; whence it is inferred that, on at least two occasions, the previously existing inhabitants of the Earth were almost wholly destroyed, and a different class of inhabitants created. Comparing the general life on the Earth to a thread, Hugh Miller says:—
"It is continuous from the present time up to the commencement of the Tertiary period; and then so abrupt a break occurs, that, with the exception of the microscopic diatomaceæ, to which I last evening referred, and of one shell and one coral, not a single species crossed the gap. On its farther or remoter side, however, where the Secondary division closes, the intermingling of species again begins, and runs on till the commencement of this great Secondary division; and then, just where the Palæozoic division closes, we find another abrupt break, crossed, if crossed at all—for there still exists some doubt on the subject—by but two species of plant."
These breaks are supposed to imply actual new creations on the surface of our planet—supposed not by Hugh Miller only, but by the majority of geologists. And the terms Palæozoic, Mesozoic, and Cainozoic, are used to indicate these three successive systems of life. It is true that some accept this belief with caution; knowing how geologic research has been all along tending to fill up what were once thought wide gaps. Sir Charles Lyell points out that "the hiatus which exists in Great Britain between the fossils of the Lias and those of the Magnesian Limestone, is supplied in Germany by the rich fauna and flora of the Muschelkalk, Keuper, and Bunter Sandstein, which we know to be of a date precisely intermediate." Again he remarks that "until lately the fossils of the coal-measures were separated from those of the antecedent Silurian group by a very abrupt and decided line of demarcation; but recent discoveries have brought to light in Devonshire, Belgium, the Eifel, and Westphalia, the remains of a fauna of an intervening period." And once more, he says, "we have also in like manner had some success of late years in diminishing the hiatus which still separates the Cretaceous and Eocene periods in Europe." To which let us add that, since Hugh Miller penned the passage above quoted, the second of the great gaps he refers to has been very considerably narrowed by the discovery of strata containing Palæozoic genera and Mesozoic genera intermingled. Nevertheless, the occurrence of two great revolutions in the Earth's Flora and Fauna appears still to be held by many; and geologic nomenclature habitually assumes it.
Before seeking a solution of the problem thus raised, let us glance at the several minor causes which produce breaks in the geological succession of organic forms; taking first, the more general ones which modify climate, and, therefore, the distribution of life. Among these may be noted one which has not, we believe, been named by writers on the subject. We mean that resulting from a certain slow astronomic rhythm, by which the northern and southern hemispheres are alternately subject to greater extremes of temperature. In consequence of the slight ellipticity of its orbit, the Earth's distance from the sun varies to the extent of some 3,000,000 of miles. At present, the aphelion occurs at the time of our northern summer; and the perihelion during the summer of the southern hemisphere. In consequence, however, of that slow movement of the Earth's axis which produces the precession of the equinoxes, this state of things will in time be reversed: the Earth will be nearest to the sun during the summer of the northern hemisphere, and furthest from it during the southern summer or northern winter. The period required to complete the slow movement producing these changes, is nearly 26,000 years; and were there no modifying process, the two hemispheres would alternately experience this coincidence of summer with relative nearness to the sun, during a period of 13,000 years. But there is also a still slower change in the direction of the axis major of the Earth's orbit; from which it results that the alternation we have described is completed in about 21,000 years. That is to say, if at a given time the Earth is nearest to the sun at our mid-summer, and furthest from the sun at our mid-winter; then, in 10,500 years afterwards, it will be furthest from the sun at our mid-summer, and nearest at our mid-winter. Now the difference between the distances from the sun at the two extremes of this alternation, amounts to one-thirtieth; and hence, the difference between the quantities of heat received from the sun on a summer's day under these opposite conditions amounts to one-fifteenth. Estimating this, not with reference to the zero of our thermometers, but with reference to the temperature of the celestial spaces, Sir John Herschel calculates "23° Fahrenheit, as the least variation of temperature under such circumstances which can reasonably be attributed to the actual variation of the sun's distance." Thus, then, each hemisphere has at a certain epoch, a short summer of extreme heat, followed by a long and very cold winter. Through the slow change in the direction of the Earth's axis, these extremes are gradually mitigated. And at the end of 10,500 years, there is reached the opposite state—a long and moderate summer, with a short and mild winter. At present, in consequence of the predominance of sea in the southern hemisphere, the extremes to which its astronomical conditions subject it, are much ameliorated; while the great proportion of land in the northern hemisphere, tends to exaggerate such contrast as now exists in it between winter and summer: whence it results that the climates of the two hemispheres are not widely unlike. But 10,000 years hence, the northern hemisphere will undergo annual variations of temperature far more marked than now.
In the last edition of his Outlines of Astronomy, Sir John Herschel recognizes this as an element in geological processes; regarding it as possibly a part-cause of those climatic changes indicated by the records of the Earth's past. That it has had much to do with those larger changes of climate of which we have evidence, seems unlikely, since there is reason to think that these have been far slower and more lasting; but that it must have entailed a rhythmical exaggeration and mitigation of the climates otherwise produced, seems beyond question. And it seems also beyond question that there must have been a consequent rhythmical change in the distribution of organisms—a rhythmical change to which we here wish to draw attention, as one cause of minor breaks in the succession of fossil remains. Each species of plant and animal has certain limits of heat and cold within which