Spencer Herbert

Essays: Scientific, Political, & Speculative (Vol. 1-3)


Скачать книгу

appliances parallelisms not less remarkable than those above set forth. Already we have shown that, as classes, wholesale and retail distributors discharge in a society the office which the vascular system discharges in an individual creature; that they come into existence later than the other two great classes, as the vascular layer appears later than the mucous and serous layers; and that they occupy a like intermediate position. Here, however, it remains to be pointed out that a complete conception of the circulating system in a society, includes not only the active human agents who propel the currents of commodities, and regulate their distribution, but includes, also, the channels of communication. It is the formation and arrangement of these to which we now direct attention.

      Going back once more to those lower animals in which there is found nothing but a partial diffusion, not of blood, but only of crude nutritive fluids, it is to be remarked that the channels through which the diffusion takes place, are mere excavations through the half-organized substance of the body: they have no lining membranes, but are mere lacunæ traversing a rude tissue. Now countries in which civilization is but commencing, display a like condition: there are no roads properly so called; but the wilderness of vegetal life covering the earth's surface is pierced by tracks, through which the distribution of crude commodities takes place. And while, in both cases, the acts of distribution occur only at long intervals (the currents, after a pause, now setting towards a general centre and now away from it), the transfer is in both cases slow and difficult. But among other accompaniments of progress, common to animals and societies, comes the formation of more definite and complete channels of communication. Blood-vessels acquire distinct walls; roads are fenced and gravelled. This advance is first seen in those roads or vessels that are nearest to the chief centres of distribution; while the peripheral roads and peripheral vessels long continue in their primitive states. At a yet later stage of development, where comparative finish of structure is found throughout the system as well as near the chief centres, there remains in both cases the difference that the main channels are comparatively broad and straight, while the subordinate ones are narrow and tortuous in proportion to their remoteness. Lastly, it is to be remarked that there ultimately arise in the higher social organisms, as in the higher individual organisms, main channels of distribution still more distinguished by their perfect structures, their comparative straightness, and the absence of those small branches which the minor channels perpetually give off. And in railways we also see, for the first time in the social organism, a system of double channels conveying currents in opposite directions, as do the arteries and veins of a well-developed animal.

      These parallelisms in the evolutions and structures of the circulating systems, introduce us to others in the kinds and rates of the movements going on through them. Through the lowest societies, as through the lowest creatures, the distribution of crude nutriment is by slow gurgitations and regurgitations. In creatures that have rude vascular systems, just as in societies that are beginning to have roads, there is no regular circulation along definite courses; but, instead, periodical changes of the currents—now towards this point and now towards that. Through each part of an inferior mollusk's body, the blood flows for a while in one direction, then stops and flows in the opposite direction; just as through a rudely-organized society, the distribution of merchandize is slowly carried on by great fairs, occurring in different localities, to and from which the currents periodically set. Only animals of tolerably complete organizations, like advanced communities, are permeated by constant currents that are definitely directed. In living bodies, the local and variable currents disappear when there grow up great centres of circulation, generating more powerful currents by a rhythm which ends in a quick, regular pulsation. And when in social bodies there arise great centres of commercial activity, producing and exchanging large quantities of commodities, the rapid and continuous streams drawn in and emitted by these centres subdue all minor and local circulations: the slow rhythm of fairs merges into the faster one of weekly markets, and in the chief centres of distribution, weekly markets merge into daily markets; while in place of the languid transfer from place to place, taking place at first weekly, then twice or thrice a week, we by-and-by get daily transfer, and finally transfer many times a day—the original sluggish, irregular rhythm, becomes a rapid, equable pulse. Mark, too, that in both cases the increased activity, like the greater perfection of structure, is much less conspicuous at the periphery of the vascular system. On main lines of railway, we have, perhaps, a score trains in each direction daily, going at from thirty to fifty miles an hour; as, through the great arteries, the blood moves rapidly in successive gushes. Along high roads, there go vehicles conveying men and commodities with much less, though still considerable, speed, and with a much less decided rhythm; as, in the smaller arteries, the speed of the blood is greatly diminished and the pulse less conspicuous. In parish-roads, narrower, less complete, and more tortuous, the rate of movement is further decreased and the rhythm scarcely traceable; as in the ultimate arteries. In those still more imperfect by-roads which lead from these parish-roads to scattered farmhouses and cottages, the motion is yet slower and very irregular; just as we find it in the capillaries. While along the field-roads, which, in their unformed, unfenced state, are typical of lacunæ, the movement is the slowest, the most irregular, and the most infrequent; as it is, not only in the primitive lacunæ of animals and societies, but as it is also in those lacunæ in which the vascular system ends among extensive families of inferior creatures.

      Thus, then, we find between the distributing systems of living bodies and the distributing systems of bodies-politic, wonderfully close parallelisms. In the lowest forms of individual and social organisms, there exist neither prepared nutritive matters nor distributing appliances; and in both, these, arising as necessary accompaniments of the differentiation of parts, approach perfection as this differentiation approaches completeness. In animals, as in societies, the distributing agencies begin to show themselves at the same relative periods, and in the same relative positions. In the one, as in the other, the nutritive materials circulated are at first crude and simple, gradually become better elaborated and more heterogeneous, and have eventually added to them a new element facilitating the nutritive processes. The channels of communication pass through similar phases of development, which bring them to analogous forms. And the directions, rhythms, and rates of circulation, progress by like steps to like final conditions.

      We come at length to the nervous system. Having noticed the primary differentiation of societies into the governing and governed classes, and observed its analogy to the differentiation of the two primary tissues which respectively develop into organs of external action and organs of alimentation; having noticed some of the leading analogies between the development of industrial arrangements and that of the alimentary apparatus; and having, above, more fully traced the analogies between the distributing systems, social and individual; we have now to compare the appliances by which a society, as a whole, is regulated, with those by which the movements of an individual creature are regulated. We shall find here parallelisms equally striking with those already detailed.

      The class out of which governmental organization originates, is, as we have said, analogous in its relations to the ectoderm of the lowest animals and of embryonic forms. And as this primitive membrane, out of which the nervo-muscular system is evolved, must, even in the first stage of its differentiation, be slightly distinguished from the rest by that greater impressibility and contractility characterizing the organs to which it gives rise; so, in that superior class which is eventually transformed into the directo-executive system of a society (its legislative and defensive appliances), does there exist in the beginning, a larger endowment of the capacities required for these higher social functions. Always, in rude assemblages of men, the strongest, most courageous, and most sagacious, become rulers and leaders; and, in a tribe of some standing, this results in the establishment of a dominant class, characterized on the average by those mental and bodily qualities which fit them for deliberation and vigorous combined action. Thus that greater impressibility and contractility, which in the rudest animal types characterize the units of the ectoderm, characterize also the units of the primitive social stratum which controls and fights; since impressibility and contractility are the respective roots of intelligence and strength.

      Again, in the unmodified ectoderm, as we see it in the Hydra, the units are all endowed both with impressibility and contractility; but as we ascend to higher types of organization, the ectoderm differentiates into classes of units which divide those two functions between them: some, becoming