Томас Чаморро-Премузик

Уверенность в себе. Как повысить самооценку, преодолеть страхи и сомнения


Скачать книгу

вообще отсутствуют нижние конечности, среднее число ног получается меньше двух. То же самое происходит, когда данные положительно асимметричны, что подразумевает, что большинство людей окажутся «ниже среднего». Известный пример: у большинства людей зарплата меньше среднестатистической, поскольку среднестатистическая зарплата раздута за счет небольшого количества людей со сверхвысокими зарплатами. Однако в большинстве случаев мы имеем дело с нормальным распределением переменных, что делает статистическое среднее примерно равным средней точке шкалы, а также наиболее часто встречающемуся значению.

      33

      J. Friedrich,“On Seeing Oneself as Less Self-serving Than Others: The Ultimate Self-serving Bias?” Teaching of Psychology 23, no. 2 (1996): 107–9.

      34

      E. Pronin, D. Y. Lin, and L. Ross, “The Bias Blind Spot: Perceptions of Bias in Self Versus Others,” Personality and Social Psychology Bulletin 28, no. 3 (2002): 369–81.

      35

      Ibid., 378.

      36

      T. Sharot, “The Optimism Bias,” Current Biology 21, no. 23 (2011): R941–45.

      37

      University of California, San Diego, “California’s Leadership in Tobacco Control Resulted in Lower Lung Cancer Rate, Study Finds,” ScienceDaily, September 29, 2010, http://www.sciencedaily.com/releases/2010/09/100929142131.htm.

      38

      D. Thompson, The Fix (London, UK: Harper Collins, 2012).

      39

      C. Colvin, J. Block, and D. C. Funder, “Overly Positive Self-Evaluations and Personality: Negative Implications for Mental Health,” Journal of Personality and Social Psychology 68, no. 6 (1995):1152–62.

      40

      Ibid., 1156.

      41

      Ibid., 1159.

      42

      R. Trivers, The Folly of Fools: The Logic of Deceit and Self-deception in Human Life (New York: Basic Books, 2011).

      43

      K. H. Lambird and T. Mann, “When Do Ego Threats Lead to Self-regulation Failure? Negative Consequences of Defensive High Self-esteem,” Personality and Social Psychology Bulletin 32, no. 9 (2006): 1177–87.

      44

      D. L. Paulhus, P. D. Harms, M. N. Bruce, and D. C. Lysy, “The Over-Claiming Technique: Measuring Self-Enhancement Independent of Ability,” Journal of Personality and Social Psychology 84, no. 4 (2003): 890–904.

/9j/4AAQSkZJRgABAQEAAQABAAD/2wBDAAEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQICAQECAQEBAgICAgICAgICAQICAgICAgICAgL/2wBDAQEBAQEBAQEBAQECAQEBAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgL/wAARCANXAjoDAREAAhEBAxEB/8QAHwABAAEEAwEBAQAAAAAAAAAAAAcGCAkKAQQFAgML/8QAahAAAQQBAwMCBAIGBAgIBwEhAwECBAUGAAcRCBITFCEJFSIxI0EWJDJRYXEKgZHwFyUzQlKhsdEYOGJ3krbB8RknN0RXcpbV4Sg0Q1iXtRo2RoLUJjVFR1NVZWdzdHWDhYaVo7O009bX/8QAHgEBAAEFAQEBAQAAAAAAAAAAAAYDBAUHCAIBCQr/xABgEQACAQMDAgQEAwQFBgcKCA8BAgMABBEFEiEGMRMiQVEHFDJhI0JxFVKBkQhiobHwFiQzcsHRFzZ0gpKz0yU1Q1WUlbLS4fEJNFNWV2Nkc4OEk7TUJkZUGEV1o2Wiwv/aAAwDAQACEQMRAD8A3+NKU0pTSlNKU0pTSlNKU0pTSlNKU0pTSlNKU0pTSlNKU0pTSlNKU0pTSlNKU0pTSlNKU0pTSlNKU0pTSlNKU0pTSlNKU0pTSlNKU0pTSlNKU0pTSlNKU0pTSlNKU0pTSlNKU0pTSlNKU0pTSlNKU0pTSlNKU0pTSlNKU0pTSlNKU0pTSlNKU0pTSlNKU0pTSlNKU0pTSlNKU0pTSlNKU0pTSlNKU0pTSlNKU0pTSlNKU0pTSlNKU0pTSlNKU0pTSlNKU0pTSlNKU0pTSlNKU0pTSlNKU0pTSlNKU0pTSlNKU0pTSlNKU0pTSlNKU0pTSlNKU0pTSlNKU0pTSlNKU0pTSlNKU0pTSlNKU0pTSlNKU0pTSlNKU0pTSlNKU0pTSlNKU0pTSlNKU0pTSlNKU0pTSlNKU0pTSlNKU0pTSlNKU0pTSlNKU0pTSlNKU0pTSlNKU0pTSlNKU0pTSlNKU0pTSlNKU0pTSlNKU0pTSlNKU0pTSlNKU0pTSlNKU0pTSlNKU0pTSlNKU0pTSlNKU0pTSlNKU0pTSlNKU0pTSlNKU0pTSlNKU0pTSlNKU0pTSlNKU0pTSlNKU0pTSlNKU0pTSlNKU0pTSlNKU0pTSlNKU0pTSlNKU0pTSlNKU0pTSlNKU0pTSlNKU0pTSlNKU0pTSlNKU0pTSlNKU0pTSlNKU0pTSlNKU0pTSlNKU0pTSlNKU0pTSlNKU0pTSlNKU0pTSlNKU0pTSlNKU0pTSlNKU0pTSlNKU0pTSlNKU0pTSlNKU0pTSlNKU0pTSlNKU0pTSlNKU0pTSlNKU0pTSlNKU0pTSlNKU0pTSlNKU0pTSlNKU0pTSlNKU0pTSlNKU0pTSlNKU0pTSlNKU0pTSlNKU0pTSlNKU0pTSlNKU0pTSlNKU0pTSlNKU0pTSlNKU0pTSlNKU0pTSlNKU0pTSlNKU0pTSlNKU0pTSlNKU0pTSlNKU0pTSlNKU0pTSlNKU0pTSlNKU0pTSlNKU0pTSlNKU0pTSlNKU0pTSlW0dUmVdR+L4Zh7OmDC8My/Pck3UwTFL6Tn62z8Wwjbu6nHZmm4FjEpJ0eTYrWV4WPHGEVqmIZrVVG8qlJFml1PS7besFhO1wbmZgWMSRWk8sSxqCN0k9ykNuuSFHikkjFVGMcen6tcbDPe2sUTWsAO3x5Xu7eKRGba21Y7aSeckDJ8EKMlsVh42e+IF8SvercDr/2+29216W8yyfoK34wrZ42LVVZudXW+9cLIHRLG7uKebZZQkbELGLjhJhhBK6WIhobmuIg1a997pKRXmkdL9QXjeDp2s6xcaddBCSbS2tJoIrm9V2UeIEWYyiPYPJG2TkgV86ht5dKvtU0ezkW41CPQItXtGcYWa5urR7i1spF4CB5UEBlDkkujBcbtmTofxIOi39JYmLm39w5hJe479mhZZ6fIP8FhN4QmSKfawe760/6Lvz5s1VAlYlt6hx09O1rpHItUrNG1CSyjsVM51RZZLMYwbyKFpFd7QNj5lVEbEmHfwrFcqrEWtxI+nWlzcaqFs30pIDfgsGFg86RlFvNpb5XcZVC+PsxuXdjcuahZ16dLKdVw+iGXuWSr6npVFPyis2xucLzuoPe47W1hLiVcY9k9jjY6a8hpABKe1Y1gR71hmaxjnie1PGnK2qLqj2RE37FBNypwjxASJFuKOVdlLSxEFAwMciyZ2ENVzqCPpUemT6gPlrfWXSO2kJBimkkVykayAlQ5MboFYqxkRowC6kV1sL+IB0nbi9RG7HSthO6osg3s2Kgy7PePG4uJZuKm23gQo6SDy8pzqZjwqKADhCMa5LF6ONHMFPxAlaynbSJd6TqGuwuP2PpUjxT3Dnw40kRpFZNz7dx/ClcbdwaJGlUmMbq+3cT2Opafo1ypTVtViS4t7YAtNLA6wssyooP4f+c24LHGGniU4LqD0Nt/iMdGO7mfYBttt7vrjWQ5Ju1DySdtCcNbk8PE93gYc+SLLE2oz2xow0m4kitLEOkwNTPlGC0avVij+vVzb29zctNHFCxmt7WO9aJh4c3yUoQx3ghfEjWrh1InVSg3LuIyDVG8dbFUe5YLE921j4gO+Jb1d2bSSWPdHFceVgIpGViQVGWGK53S+It0YbL5xkO3m5G/WI45kWF2mH0e4RVjX1pje191uDIZDwSo3VzOnqJFRtpZ3Msoh1se6mwzSVIitZ2KjtUrENqM8EFmPGa7uWsoTwqTXqqHazhkYhJboKwZreNmkXgMAxUH7ekadDJLeOsPg2pvpFyGljsQzKb2WFSZY7TcjAXLosTbXKsQjlYm+LJ1gbvdDPRHuL1Z7KU22eY2O1cvFLC5xjcgeSvpckx3JcjqcWUdTZ4nMYWushyryHJGUjTAIIDxqjVe16WF3PcWuo6HaFVVdVvoNPcOGDxy3UqwRsMf/JOSZUYAsowpDgKc3oNhaa3a6zLHc82Gm3mpwyRsrxSR2NpLeOn3+YijCxSK2FZgxypyLc/iC9enVv0bdIvSfvxjNL08ZjnO8m6Wym0G4tTkNTuRX4lAvd93xw0eQYY6rtnzRVlWcrvUR53cWYP3G8JEQa5u6tQvXej9KWz4stXupLASyDM0c0EUssk2F/DaN1gdVjyGVnTLMA5GG0d11DoLqTrGZNtxoGmprAhVvw5baSe2gW23ld6zKbqNzNt2ERuNmWWr+d0Otvp86c5NZg2/O7eOQ92oe2Ttz8sw/CcbzDL8ig4NTmj1mTbnnwPD6y2tse20Bbkc1bGaNABava873Me5LO4uLPxdUktmZNP0t4lnlk/0doLgsLf5ydR4MDS7Tt3ldwBYeTzVUs7LUJrXS5JY1a41betuqcG6ljj8WWO1jY+LO0aZJVFLHawxuBWqP3e+Jx0QbF4FspuvuVvrUVG1HUStUzZ3dKpxnNsw25zEt4jH1AQ5niGOToFSSRHUhWevNFRAxzFerWhKrbo2V2vUFv0s8DRa9dbPDt3wpfeyKu12IjOTJHzvxiWMjIdc28csc2gXPU0LePo9kZFmkTLPGYgxkDwAeOCpSRSDHkPHIh8yMBWW+nXt0rdOG6+zmxe7W5y0m7+/7ns2f2+psMzzM8hzlRy0hOdXCw7Gpwog/Mhla6WWOjhxDlarhAM9lvZI+oarNolohk1G3j8WRD5BHGCwZ3kfbGqx7C0hLfhptdwquhb7cyJaaInUc8iro8r+GkqkOXcpE6qkSFpWMgljEWExIzbEJZWC9XdP4g3SDsxlWcYbuHvXj9Rd7WQqKz3b9BU5Rk1Ts9WZN3fILLd/IcXo5kDa+DLa3vES7kwm+JfM/sB+JqjDLHON8TgwG5NkJmIS3N4Ap+VFw+2E3HnUeFv3BmVSAzqDcPBNH4amMtcS2xvFgXz3JtFLBrr5ZczfLqUf8YpsOyTYW2Pjsbudf/R1sVkO1eK7pb/4Hi99vdXNuNpq9T2l07PqklfKtBWmOSMcrJgZta+BDMQZ0J4yIo0YrnFGj/b7o9Qv9KdGXUdNjklnh2t4kSRAM5dcZBUH6RliSAoJqnABc6ba6xA6S6XeyRRRXAdDE8k8ixxKr7tp3M45yAqhmYhVYijML+KD0F7gbLbpdQmLdS2By9pdkbt+ObvZLYR8nx+Xtrdt7lHX5rimQUEa5x45WDI6N6mvG2SwavA57Udx5u3SysNN1S4cJp+ruYraUYdJZVxvhXYW/GXI3RHDruXco3Lmra29xe6pf6NbQtJqemRrLPDgqyROxRZvMAGhdlYJKm5GKtgnBr42u+KL0F7zbr4Hsht11IYbebn7o4iDONtsYlVmYY4ufY7IgrZNNh1xlGNwoGSWbILXFNXw5RZ8difjRmORW6vo9PvZZ9VtUgLXWijdcxDBkjQYzJszukiUEb5Yw8ac7mADEY+e8tra30+7nmWO11SUwQSn/RvPuKCEycpHM7DEcchR5SR4atuXNTbjfES6Ntp8nzbFM730xmonbXWlDSbs2sauya7w7aG3yhArj1bu3nlDSSaXbObL9RH8Y7mdDc1DseZBMe1y2Nq63ghNuwMdzcNaRSEhIpbtCoa2ilfbHJOCwXwkctvIQDeQpvriKS0EnjoUkhtvnXjA3TpZgOfm3gTdMlvhGYSsgUqCwyoLC8iFYwbKBFtK2ZEsa6fEBYQJ8GQKVCmwZQWSIsuJKARzJMYscg3jIxysIwjXNcrVRVqTRzQPNDMhhnhLK