206
225 207
226 208
227 209
228 210
229 211
230 212
231 213
232 214
233 215
234 216
235 217
236 218
237 219
238 220
239 221
240 222
241 223
242 224
243 225
244 226
245 227
246 228
247 229
248 230
249 231
250 232
251 233
252 234
253 235
254 236
255 237
256 238
257 239
258 240
259 241
260 242
261 243
262 244
263 245
264 246
265 247
266 248
267 249
268 250
269 251
270 252
271 253
272 254
273 255
274 256
275 257
276 258
277 259
278 260
279 261
280 262
281 263
282 264
283 265
284 266
285 267
286 268
287 269
288 270
289 271
290 272
291 273
292 274
293 275
294 276
295 277
296 278
297 279
298 280
299 281
300 282
301 283
302 284
303 285
304 286
305 287
306 288
307 289
308 290
309 291
310 292
311 293
312 294
313 295
314 296
315 297
316 298
317 299
318 300
319 301
320 302
321 303
322 304
323 305
324 306
325 307
326 308
327 309
328 310
329 311
330 312
331 313
332 314
333 315
334 316
335 317
336 318
337 319
338 320
339 321
340 322
341 323
342 324
343 325
344 326
345 327
346 328
347 329
348 330
Preface
Today, we are facing a data rich world that is changing faster than ever before. The ubiquitous availability of data provides great opportunities for industrial enterprises to improve their process quality and productivity. Industrial data analytics is the process of collecting, exploring, and analyzing data generated from industrial operations and throughout the product life cycle in order to gain insights and improve decision-making. This book describes industrial data analytics approaches with an emphasis on diagnosis and prognosis of industrial processes and systems.
A large number of textbooks/research monographs exist on diagnosis and prognosis in the engineering field. Most of these engineering books focus on model-based diagnosis and prognosis problems in dynamic