Группа авторов

Energy


Скачать книгу

R. (2016). Geothermal power generation in the world 2010–2014 update report. Geothermics 60: 31–43.

      10 Bhattacharya, M., Paramati, S.R., Ozturk, I. et al. (2016). The effect of renewable energy consumption on economic growth: evidence from top 38 countries. Applied Energy 162: 733–741.

      11 Capasso, A., Salamandra, L., Chou, A., et al. (2014). Multi‐wall carbon nanotube coating of fluorine‐doped tin oxide as an electrode surface modifier for polymer solar cells. Solar Energy Materials & Solar Cells 122: 297–302.

      12 Cornett, A.M. (2008). A global wave energy resource assessment. Proc. ISOPE 8(March):9.

      13 Crus, J. ed. (2008). Ocean Wave Energy: Current Status and Future Perspectives. Berlin: Springer

      14 Deb, S. K. (1998). Recent developments in high efficiency photovoltaic cells. Renewable Energy 15: 467–472.

      15 Devabhaktuni, V., Alam, M., Depuru, S. S. S. R. et al. (2013). Solar energy: trends and enabling technologies. Renewable and Sustainable Energy Reviews 19: 555–564. https://doi.org/10.1016/j.rser.2012.11.024

      16 Devi, B. P., Wu, K‐C., and Pei, Z. (2011). Gold nanomesh induced surface plasmon for photocurrent enhancement in a polymer solar cell. Solar Energy Materials & Solar Cells 95 (8): 2102–2106. https://doi.org/10.1016/j.solmat.2011.02.031

      17 DiPippo, R. (2015). Geothermal Power Plants: Principles, Applications, Case Studies and Environmental Impact. Amsterdam: Elsevier. https://doi.org/10.1016/C2014‐0‐02885‐7

      18 DOE. (2018). Algal biofuels, Office of Energy Efficiency & Renewable Energy, Department of Energy. www.energy.gov (accessed 30 July 2020)

      19  Dou, L., You, J., Yang, J. et al. (2012). Tandem polymer solar cells featuring a spectrally matched low‐band gap polymer. Nature Photonics 6:180–185. https://doi.org/10.1038/nphoton.2011.356

      20 Dreamwind. (2020). Increased sustainability of wind energy through the development of new materials. www.dreamwind.dk (accessed 29 July 2020).

      21 Economist. (2012). Price of crystalline silicon photovoltaic cells (2012). www.economist.com (accessed 30 July 2020)

      22 El Chaar, L., Lamont, L.A., and El Zein, N. (2011). Review of photovoltaic technologies. Renewable and Sustainable Energy Reviews 15 (5): 2165–2175. https://doi.org/10.1016/j.rser.2011.01.004

      23 Ellabban, O., Abu‐Rub, H., and Blaabjerg, F. (2014). Renewable energy resources: current status, future prospects and their enabling technology. Renewable and Sustainable Energy Reviews 39: 748–764.

      24 El‐Shatter, T. F., Eskander, M. N., and El‐Hagry, M. T. (2006). Energy flow and management of a hybrid wind/PV/fuel cell generation system. Energy Conversion and Management 47 (9): 1264–1280. https://doi.org/10.1016/j.enconman.2005.06.022

      25 Fjeldstad, H.P., Pulg, U., and Forseth, T. (2018). Safe two‐way migration for salmonids and eel past hydropower structures in Europe: a review and recommendations for best‐practice solutions. Marine and Freshwater Research 69: 1834–1847. https://www.publish.csiro.au/mf/MF18120

      26 Frankfurt School‐UNEP Centre/BNEF. (2020). Global Trends in Renewable Energy Investment 2020. www.irena.org

      27 Friðleifsson, G.O., Pálsson, B., Albertsson, A.L. et al. (2015). IDDP‐1 drilled into Magma ‐world's first Magma‐EGS system created. Proceedings World Geothermal Congress Melbourne, Australia. http://iddp.is/wp‐content (accessed 30 July 2020)

      28 Froese, M. (2017). What are the new ideas in condition monitoring for wind turbines. Wind Power Engineering and Development. www.windpowerengineering.com (accessed 30 July 2020).

      29 Geirdal, C. A. C., Gudjonsdottir, M. S., and Jensson, P. (2015). Economic comparison of a well‐head geothermal power plant and a traditional one. Geothermics 53:1–13

      30 Gevorgian, V., Muljadi, E., Luo, Y. et al. (2017). Supercapacitor to provide ancillary services. IEEE Energy Conv Congress Expo (ECCE), pp: 1030–1036.

      31 Gong, J., Li, C., and Wasielewski, M. R. (2019). Advances in solar energy conversion. Chemical Society Reviews 48: 1862–1864.

      32 Güney, T. (2019). Renewable energy, non‐renewable energy and sustainable development. International Journal of Sustainable Development and World Ecology 26(5): 389–397.

      33 Gupta, V. K., Kubicek, C. P., Saddler, J. et al. ed. (2014). Bioenergy Research: Advances and Applications. Amsterdam: Elsevier.

      34 Harfoot, M. B. J., Tittensor, D. P., Knight, S., et al. (2018). Present and future biodiversity risks from fossil fuel exploitation. Conservation Letters 11: e12448.

      35 He, J., and Janáky, C. (2020). Recent advances in solar‐driven carbon dioxide conversion: expectations versus reality. ACS Energy Letters 5(6): 1996–2014.

      36 Helmizar, H. (2016). Turbine wheel‐a hydropower converter for head differences between 2.5 and 5 m. PhD Thesis University of Southampton.

      37  Hogan, T. W., Cada, G. F., and Amaral, S. V. (2014). The status of environmentally enhanced hydropower turbines. Fisheries 39 (4): 164–172. https://doi.org/10.1080/03632415.2014.897195

      38 Huang, B. J., Lin, T. H., Hung, W. C. et al. (2001). Performance evaluation of solar photovoltaic/thermal systems. Solar Energy 70 (5): 443–448. https://doi.org/10.1016/S0038‐092X(00)00153‐5

      39 IEA. (2020). Webpage. www.iea.org (accessed 28 July 2020)

      40 IEA‐ETSAP (International Energy Agency – Energy Technology Systems Analysis Programme) (2010). Technology Brief E07 Geothermal Heat and Power. https://iea‐etsap.org (accessed 30 July 2020)

      41 IHA. (2018) Hydropower Status Report Technical Report London, UK: International Hydropower Association.

      42 IPCC. (2011). Renewable energy sources and climate change mitigation. https://archive.ipcc.ch/pdf/special‐reports (accessed 30 July 2020)

      43 IRENA. (2016). Innovation Outlook for Offshore Wind Technology, International Renewable Energy Agency, Abu Dhabi.

      44 IRENA. (2017). Geothermal Power: Technology Brief, International Renewable Energy Agency, Abu Dhabi.

      45 IRENA. (2019a). Future of Wind: Deployment, Investment, Technology, Grid Integration and Socio‐Economic Aspects (a Global Energy Transformation Paper), International Renewable Energy Agency, Abu Dhabi.

      46 IRENA. (2019b). Advanced biofuels. What Holds them Back? International Renewable Energy Agency, Abu Dhabi.

      47 IRENA. (2019c). Renewable Capacity Statistics 2019, International Renewable Energy Agency, Abu Dhabi.

      48 IRENA. (2019d). Renewable Power Generation Costs in 2018, International Renewable Energy Agency, Abu Dhabi.

      49 IRENA. (2019e). Innovation Landscape Brief: Artificial Intelligence and Big Data, International Renewable Energy Agency, Abu Dhabi.

      50 IRENA.