Группа авторов

Magnetic Nanoparticles in Human Health and Medicine


Скачать книгу

InTech.

      91  Peddis, D., Laureti, S., Mansilla, M.V. et al. (2009). Exchange bias in CoFe2O4/NiO nanocomposites. Superlattices and Microstructures 46: 125–219.

      92 Reeves, D.B. and Weaver, J.B. (2014). Approaches for modeling magnetic nanoparticle dynamics. Critical Reviews in Biomedical Engineering 42 (1): 85–93.

      93 Riviere, C., Roux, S., Tillement, O. et al. (2006). Nanosystems for medical applications: biological detection, drug delivery, diagnostic and therapy. Annales de Chimie. Science des Materiaux (Paris) 31 (3): 351–367.

      94 Rosensweig, R.E. (1985). Ferrohydrodynamics. Cambridge: Cambridge University Press.

      95 Rosensweig, R.E. (2002). Heating magnetic fluid with alternating magnetic field. Journal of Magnetism and Magnetic Materials 252: 370–374.

      96 Sayhi, M., Ouerghi, O., Belgacem, K. et al. (2018). Electrochemical detection of influenza virus H9N2 based on both immunomagnetic extraction and gold catalysis using an immobilization‐free screen printed carbon microelectrode. Biosensors & Bioelectronics 107: 170–177.

      97 Saylan, Y., Erdem, O., Ünal, S., and Denizli, A. (2019). An alternative medical diagnosis method: biosensors for virus detection. Biosensors 9: 65.

      98 Shan, Z., Wu, Q., Wang, X. et al. (2010). Bacteria capture, lysate clearance, and plasmid DNA extraction using pH‐sensitive multifunctional magnetic nanoparticles. Analytical Biochemistry 398 (1): 120–122.

      99 Shokrollahi, H., Khorramdin, A., and Isapour, G. (2014). Magnetic resonance imaging by using nano‐magnetic particles. Journal of Magnetism and Magnetic Materials 369 (11): 176–183.

      100 Smit, J. and Wijin, H.P.J. (1961). Les Ferites. Paris: Bibl. Tehn. Philips.

      101 Sun, C., Lee, J.S., and Zhang, M.Q. (2008). Magnetic nanoparticles in MR imaging and drug delivery. Advanced Drug Delivery Reviews 60 (11): 1252–1265.

      102 Sung, H.W.F. and Rudowicz, C. (2003). Physics behind the magnetic hysteresis loop – a survey of misconceptions in magnetism literature. Journal of Magnetism and Magnetic Materials 260 (1–2): 250–260.

      103 Vargas, J., Lima, E. Jr., Zysler, R. et al. (2008). Effective anisotropy field variation of magnetite nanoparticles with size reduction. European Physical Journal B 64: 211.

      104 Vassiliou, J.K., Mehrotra, V., Russell, M.W., and Giannelis, E.P. (1993). Magnetic and optical properties of γ‐Fe2O3 nanocrystals. Journal of Applied Physics 73: 5109–5116.

      105 Veiseh, O., Gunn, J.W., Kievit, F.M. et al. (2009). Inhibition of tumor‐cell invasion with chlorotoxin‐bound superparamagnetic nanoparticles. Small (Weinheim and der Bergstrasse Germany) 5 (2): 256–264.

      106 Vonsovskii, S.V. (1974). Magnetism. New York: Wiley.

      107 Wells, J., Kazakova, O., Posth, O. et al. (2017). Standardisation of magnetic nanoparticles in liquid suspension. Journal of Physics D: Applied Physics 50: 383003.

      108 White, M.A., Johnson, J.A., Koberstein, J.T., and Turro, N.J. (2006). Toward the syntheses of universal ligands for metal oxide surfaces: controlling surface functionality through click chemistry. Journal of the American Chemical Society 128 (35): 11356–11357.

      109 Wijn, H.P.J. (1986). Magnetic proprieties of metals. In: Landolt‐Börnstein, vol. III/19a. Heidelberg: Springer‐Verlag.

      110 Wu, K., Tu, L., Su, D., and Wang, J.P. (2017). Magnetic dynamics of ferrofluids: mathematical models and experimental investigations. Journal of Physics D: Applied Physics 50 (8): 085005.

      111 Xu, C. and Sun, S. (2012). New forms of superparamagnetic nanoparticles for biomedical applications. Advanced Drug Delivery Reviews 65 https://doi.org/10.1016/j.addr.2012.10.008.

      112 Yamauchi, J. (2008). Fundamentals of magnetism. In: Nitroxides: Applications in Chemistry, Biomedicine, and Materials Science (eds. G.I. Likhtenshtein, J. Yamauchi, S. Nakatsuji, et al.). Wiley.

      113 Zhang, L., Papaefthymiou, G.C., Ziolo, R.F., and Ying, J.Y. (1997). Novel γ‐Fe2O3/SiO2 magnetic nanocomposites via sol‐gel matrix‐mediated synthesis. Nano Structured Materials 9: 185–188.

Part I Current Biomedical Applications of Magnetic Nanoparticles

       Gabriela Fabiola Ştiufiuc1, Cristian Iacoviță2, Valentin Toma3, Rareș Ionuț Ştiufiuc2,3, Romulus Tetean1, and Constantin Mihai Lucaciu2

       1 Faculty of Physics, “Babeș‐Bolyai” University, Cluj‐Napoca, Romania

       2 Department of Pharmaceutical Physics and Biophysics, “Iuliu Hațieganu” University of Medicine and Pharmacy, Cluj‐Napoca, Romania

       3 MedFuture Research Center for Advanced Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, Cluj‐Napoca, Romania

      Magnetic materials are in the limelight of modern nanotechnological applications. Over the last decades, a tendency of miniaturization has been observed for different types of magnetic materials, which can be understood from the point of view of their size‐dependent properties. The advancements in the field of nanotechnology have shown that Magnetic Nanoparticles (MNPs) display completely different properties as compared to those of bulk materials. By reducing their size to values of the order of their single‐domain dimension (~20 nm) or even lower, the MNPs, which at room temperature can exhibit a ferro‐ or ferri‐magnetic behavior, become superparamagnetic (SP). In other words, the reduction of their size can be used for modulating their physical properties by diminishing the magnetic interaction manifesting between them. This finding represented a very good starting point, in terms of the applicability of MNPs in nanomedicine.

      There are many potential bioapplications involving nanoplatforms containing MNPs but only a few were translated to clinical applications. At the time of writing this chapter, according to the website http://www.clinicaltrials.gov, 22 clinical trials are in progress in the