Surface element integration: a novel technique for evaluation of DLVO interaction between a particle and a flat plate. Journal of Colloid and Interface Science 193 (2): 273–285.
10 Bigall, N.C., Wilhelm, C., Beoutis, M.‐L. et al. (2013). Colloidal ordered assemblies in a polymer shell – a novel type of magnetic nanobeads for theranostic applications. Chemistry of Materials 25 (7): 1055–1062.
11 Bishop, K.J.M., Wilmer, C.E., Soh, S., and Grzybowski, B.A. (2009). Nanoscale forces and their uses in self‐assembly. Small 5 (14): 1600–1630.
12 Boal, A.K., Ilhan, F., DeRouchey, J.E. et al. (2000). Self‐assembly of nanoparticles into structured spherical and network aggregates. Nature 404 (6779): 746–748.
13 Bulte, J.W.M. (2019). Superparamagnetic iron oxides as MPI tracers: a primer and review of early applications. Advanced Drug Delivery Reviews 138: 293–301.
14 Butter, K., Bomans, P.H.H., Frederik, P.M. et al. (2003). Direct observation of dipolar chains in iron ferrofluids by cryogenic electron microscopy. Nature Materials 2 (2): 88–91.
15 Casimir, H.B.G. and Polder, D. (1948). The influence of retardation on the London‐van der Waals forces. Physical Review 73 (4): 360–372.
16 Casula, M.F., Conca, E., Bakaimi, I. et al. (2016). Manganese doped‐iron oxide nanoparticle clusters and their potential as agents for magnetic resonance imaging and hyperthermia. Physical Chemistry Chemical Physics 18 (25): 16848–16855.
17 Cha, J., Lee, J.S., Yoon, S.J. et al. (2013). Solid‐state phase transformation mechanism for formation of magnetic multi‐granule nanoclusters. RSC Advances 3 (11): 3631–3637.
18 Chayen, N.E. (2002). Tackling the bottleneck of protein crystallization in the post‐genomic era. Trends in Biotechnology 20 (3): 98.
19 Coral, D.F., Soto, P.A., Blank, V. et al. (2018). Nanoclusters of crystallographically aligned nanoparticles for magnetic thermotherapy: aqueous ferrofluid, agarose phantoms and ex vivo melanoma tumour assessment. Nanoscale 10 (45): 21262–21274.
20 Daniele, M.A., Shaughnessy, M.L., Roeder, R. et al. (2013). Magnetic nanoclusters exhibiting protein‐activated near‐infrared fluorescence. ACS Nano 7 (1): 203–213.
21 Dawson, K.A. (2002). The glass paradigm for colloidal glasses, gels, and other arrested states driven by attractive interactions. Current Opinion in Colloid & Interface Science 7 (3): 218–227.
22 Deka, S.R., Quarta, A., Di Corato, R. et al. (2011). Magnetic nanobeads decorated by thermo‐responsive PNIPAM shell as medical platforms for the efficient delivery of doxorubicin to tumour cells. Nanoscale 3 (2): 619–629.
23 Deng, H., Li, X., Peng, Q. et al. (2005). Monodisperse magnetic single‐crystal ferrite microspheres. Angewandte Chemie International Edition 44 (18): 2782–2785.
24 Desiraju, G.R. (1995). Supramolecular synthons in crystal engineering – a new organic synthesis. Angewandte Chemie International Edition in English 34 (21): 2311–2327.
25 Di Corato, R., Piacenza, P., Musaro, M. et al. (2009). Magnetic‐fluorescent colloidal nanobeads: preparation and exploitation in cell separation experiments. Macromolecular Bioscience 9 (10): 952–958.
26 Di Corato, R., Bigall, N.C., Ragusa, A. et al. (2011). Multifunctional nanobeads based on quantum dots and magnetic nanoparticles: synthesis and cancer cell targeting and sorting. ACS Nano 5 (2): 1109–1121.
27 Di Corato, R., Palumberi, D., Marotta, R. et al. (2012). Magnetic nanobeads decorated with silver nanoparticles as cytotoxic agents and photothermal probes. Small 8 (17): 2731–2742.
28 Di Corato, R., Bealle, G., Kolosnjaj‐Tabi, J. et al. (2015). Combining magnetic hyperthermia and photodynamic therapy for tumor ablation with photoresponsive magnetic liposomes. ACS Nano 9 (3): 2904–2916.
29 Ditsch, A., Laibinis, P.E., Wang, D.I.C., and Hatton, T.A. (2005). Controlled clustering and enhanced stability of polymer‐coated magnetic nanoparticles. Langmuir 21 (13): 6006–6018.
30 Dorogi, M., Gomez, J., Osifchin, R. et al. (1995). Room‐temperature Coulomb blockade from a self‐assembled molecular nanostructure. Physical Review B 52 (12): 9071–9077.
31 Durbin, S.D. and Feher, G. (1996). Protein crystallization. Annual Review of Physical Chemistry 47 (1): 171–204.
32 Dzyaloshinskii, I.E., Lifshitz, E.M., Pitaevskii, L.P., and Priestley, M.G. (1992). The general theory of van der Waals forces. In: Perspectives in Theoretical Physics (ed. L.P. Pitaevski), 443–492. Amsterdam: Pergamon.
33 Euliss, L.E., Grancharov, S.G., O'Brien, S. et al. (2003). Cooperative assembly of magnetic nanoparticles and block copolypeptides in aqueous media. Nano Letters 3 (11): 1489–1493.
34 Fialkowski, M., Bishop, K.J.M., Klajn, R. et al. (2006). Principles and implementations of dissipative (dynamic) self‐assembly. The Journal of Physical Chemistry B 110 (6): 2482–2496.
35 Foffi, G., McCullagh, G.D., Lawlor, A. et al. (2002). Phase equilibria and glass transition in colloidal systems with short‐ranged attractive interactions: application to protein crystallization. Physical Review E 65 (3): 031407.
36 Fresnais, J., Lavelle, C., and Berret, J.F. (2009). Nanoparticle aggregation controlled by desalting kinetics. The Journal of Physical Chemistry C 113 (37): 16371–16379.
37 Ganesan, V., Lahiri, B.B., Louis, C. et al. (2019). Size‐controlled synthesis of superparamagnetic magnetite nanoclusters for heat generation in an alternating magnetic field. Journal of Molecular Liquids 281: 315–323.
38 Ge, J.P., Hu, Y.X., Biasini, M. et al. (2007). Superparamagnetic magnetite colloidal nanocrystal clusters. Angewandte Chemie International Edition 46 (23): 4342–4345.
39 Goyal, A., Hall, C.K., and Velev, O.D. (2008). Phase diagram for stimulus‐responsive materials containing dipolar colloidal particles. Physical Review E 77 (3): 031401.
40 Guardia, P., Di Corato, R., Lartigue, L. et al. (2012). Water‐soluble iron oxide nanocubes with high values of specific absorption rate for cancer cell hyperthermia treatment. ACS Nano 6 (4): 3080–3091.
41 Guo, S. and Dong, S. (2011). Metal nanomaterial‐based self‐assembly: development, electrochemical sensing and SERS applications. Journal of Materials Chemistry 21 (42): 16704–16716.
42 Hahn, Y.K., Jin, Z., Kang, J.H. et al. (2007). Magnetophoretic immunoassay of allergen‐specific IgE in an enhanced magnetic field gradient. Analytical Chemistry 79 (6): 2214–2220.
43 Hamaker, H.C. (1937). The London – van der Waals attraction between spherical particles. Physica 4 (10): 1058–1072.
44 Harfenist, S.A., Wang, Z.L., Alvarez, M.M. et al. (1996). Highly oriented molecular Ag nanocrystal arrays. The Journal of Physical Chemistry 100 (33): 13904–13910.
45 Hayashi, K., Nakamura, M., Sakamoto, W. et al. (2013). Superparamagnetic nanoparticle clusters for cancer theranostics combining magnetic resonance imaging and hyperthermia treatment. Theranostics 3 (6): 366–376.
46 Hecht, S. (2005). Optical switching of hierarchical self‐assembly: towards “enlightened” materials. Small 1 (1): 26–29.
47 Hugounenq, P., Levy, M., Alloyeau, D. et al. (2012). Iron oxide monocrystalline nanoflowers for highly efficient magnetic hyperthermia. The Journal of Physical Chemistry C 116 (29): 15702–15712.
48 Jana, N.R. (2004). Shape effect in nanoparticle self‐assembly. Angewandte Chemie International Edition 43 (12): 1536–1540.
49 Johnson, S.R., Evans, S.D., Mahon, S.W., and Ulman, A. (1997). Alkanethiol molecules containing an aromatic moiety self‐assembled onto gold clusters. Langmuir 13 (1): 51–57.
50 Jordan, A., Scholz, R., Wust, P. et al. (1999). Magnetic fluid hyperthermia (MFH): cancer treatment with AC magnetic field induced excitation of biocompatible superparamagnetic nanoparticles. Journal of Magnetism and Magnetic Materials 201 (1): 413–419.
51 Kim, M.‐H., Kim, B., Lim, E.‐K. et al. (2014). Magnetic nanoclusters engineered by polymer‐controlled self‐assembly