447–454.
48 Kim, M.‐S., Louis, K.M., Pedersen, J.A. et al. (2014). Using citrate‐functionalized TiO2 nanoparticles to study the effect of particle size on zebrafish embryo toxicity. Analyst 139 (5): 964–972.
49 Kolenčík, M., Ernst, D., Komár, M. et al. (2019a). Effect of foliar spray application of zinc oxide nanoparticles on quantitative, nutritional, and physiological parameters of foxtail millet (Setaria italica l.) under field conditions. Nanomaterials 9 (11): 1559.
50 Kolenčík, M., Štrba, P., Šebesta, M. et al. (2019b). Nanogold biosynthesis mediated by mixed flower pollen grains. Journal of Nanoscience and Nanotechnology 19 (5): 2983–2988.
51 Kolenčík, M., Nemček, L., Šebesta, M. et al. (2020). Effect of TiO2 as plant‐growth stimulating nanomaterial on crop production. In: Plant Responses to Nanomaterials, Recent Interventions, and Physiological and Biochemical Responses (eds. V.P. Singh, S. Singh, S.M. Prasad, et al.). Springer International Publishing.
52 Kořenková, L., Šebesta, M., Urík, M. et al. (2017). Physiological response of culture media‐grown barley (Hordeum vulgare L.) to titanium oxide nanoparticles. Acta Agriculturae Scandinavica Section B Soil and Plant Science 67 (4): 285–291.
53 Kumar, J. and Bansal, A. (2013). Photocatalysis by nanoparticles of titanium dioxide for drinking water purification: a conceptual and state‐of‐art review. Materials Science Forum 764: 130–150.
54 Kurepa, J., Paunesku, T., Vogt, S. et al. (2010). Uptake and distribution of Ultrasmall Anatase TiO2 alizarin red S Nanoconjugates in Arabidopsis thaliana. Nano Letters 10 (7): 2296–2302.
55 Kužel, S., Hruby, M., Cígler, P. et al. (2003). Mechanism of physiological effects of titanium leaf sprays on plants grown on soil. Biological Trace Element Research 91 (2): 179–189.
56 Labille, J., Feng, J., Botta, C. et al. (2010). Aging of TiO2 nanocomposites used in sunscreen. Dispersion and fate of the degradation products in aqueous environment. Environmental Pollution 158 (12): 3482–3489.
57 Lan, Y., Lu, Y., and Ren, Z. (2013). Mini review on photocatalysis of titanium dioxide nanoparticles and their solar applications. Nano Energy 2 (5): 1031–1045.
58 Landa, P., Vankova, R., Andrlova, J. et al. (2012). Nanoparticle‐specific changes in Arabidopsis thaliana gene expression after exposure to ZnO, TiO2, and fullerene soot. Journal of Hazardous Materials 241–242: 55–62.
59 Landa, P., Cyrusova, T., Jerabkova, J. et al. (2016). Effect of metal oxides on plant germination: phytotoxicity of nanoparticles, bulk materials, and metal ions. Water, Air, & Soil Pollution 227 (12): 448.
60 Larue, C., Laurette, J., Herlin‐Boime, N. et al. (2012a). Accumulation, translocation and impact of TiO2 nanoparticles in wheat (Triticum aestivum spp.): influence of diameter and crystal phase. Science of the Total Environment 431: 197–208.
61 Larue, C., Veronesi, G., Flank, A.‐M. et al. (2012b). Comparative uptake and impact of TiO2 nanoparticles in wheat and rapeseed. Journal of Toxicology and Environmental Health, Part A 75 (13–15): 722–734.
62 Larue, C., Castillo‐Michel, H., Sobanska, S. et al. (2014). Fate of pristine TiO2 nanoparticles and aged paint‐containing TiO2 nanoparticles in lettuce crop after foliar exposure. Journal of Hazardous Materials 273: 17–26.
63 Larue, C., Castillo‐Michel, H., Stein, R.J. et al. (2016). Innovative combination of spectroscopic techniques to reveal nanoparticle fate in a crop plant. Spectrochimica Acta – Part B Atomic Spectroscopy 119: 17–24.
64 Larue, C., Baratange, C., Vantelon, D. et al. (2018). Influence of soil type on TiO2 nanoparticle fate in an agro‐ecosystem. Science of the Total Environment 630: 609–617.
65 Laware, S.L. and Raskar, S. (2014). Effect of titanium dioxide nanoparticles on hydrolytic and antioxidant enzymes during seed germination in onion. International Journal of Current Microbiology and Applied Sciences 3 (7): 749–760.
66 Li, W., Shah, S.I., Huang, C.‐P. et al. (2002). Metallorganic chemical vapor deposition and characterization of TiO2 nanoparticles. Materials Science and Engineering B 96 (3): 247–253.
67 Li, Z., Ding, S., Yu, X. et al. (2018). Multifunctional cementitious composites modified with nano titanium dioxide: a review. Composites Part A: Applied Science and Manufacturing 111: 115–137.
68 Lian, J., Zhao, L., Wu, J. et al. (2020). Foliar spray of TiO2 nanoparticles prevails over root application in reducing Cd accumulation and mitigating Cd‐induced phytotoxicity in maize (Zea mays L.). Chemosphere 239: 124794.
69 Liao, D.L. and Liao, B.Q. (2007). Shape, size and photocatalytic activity control of TiO2 nanoparticles with surfactants. Journal of Photochemistry and Photobiology A: Chemistry 187 (2): 363–369.
70 Lin, X., Li, J., Ma, S. et al. (2014). Toxicity of TiO2 nanoparticles to Escherichia coli: effects of particle size, crystal phase and water chemistry. PLoS One 9 (10): 1–8.
71 Liu, R. and Lal, R. (2015). Potentials of engineered nanoparticles as fertilizers for increasing agronomic productions. Science of the Total Environment 514: 131–139.
72 Macwan, D.P., Dave, P.N., and Chaturvedi, S. (2011). A review on nano‐TiO2 sol–gel type syntheses and its applications. Journal of Materials Science 46 (11): 3669–3686.
73 Mahlambi, M.M., Ngila, C.J., and Mamba, B.B. (2015). Recent developments in environmental Photocatalytic degradation of organic pollutants: the case of titanium dioxide nanoparticles – a review’ X. Zhang (ed.). Journal of Nanomaterials 2015: 790173.
74 Mahshid, S., Askari, M., and Ghamsari, M.S. (2007). Synthesis of TiO2 nanoparticles by hydrolysis and peptization of titanium isopropoxide solution. Journal of Materials Processing Technology 189 (1): 296–300.
75 Marchiol, L., Mattiello, A., Pošćić, F. et al. (2016). Changes in physiological and agronomical parameters of barley (Hordeum vulgare) exposed to cerium and titanium dioxide nanoparticles. International Journal of Environmental Research and Public Health 13 (3): 332.
76 Mattiello, A., Filippi, A., Pošćić, F. et al. (2015). Evidence of phytotoxicity and genotoxicity in Hordeum vulgare L. exposed to CeO2 and TiO2 nanoparticles. Frontiers in Plant Science 6 (1043): 1–13.
77 Mattiello, A., Lizzi, D., and Marchiol, L. (2018). Influence of titanium dioxide nanoparticles (nTiO2) on crop plants: a systematic overview. In: Nanomaterials in Plants, Algae, and Microorganisms (eds. D.K. Tripathi, P. Ahmad, S. Sharma, et al.), 277–296. Academic Press.
78 Matúš, P., Hagarová, I., Bujdoš, M. et al. (2009). Determination of trace amounts of total dissolved cationic aluminium species in environmental samples by solid phase extraction using nanometer‐sized titanium dioxide and atomic spectrometry techniques. Journal of Inorganic Biochemistry 103 (11): 1473–1479.
79 Mohamed, M.M. and Khairou, K.S. (2011). Preparation and characterization of nano‐silver/mesoporous titania photocatalysts for herbicide degradation. Microporous and Mesoporous Materials 142 (1): 130–138.
80 Moll, J., Okupnik, A., Gogos, A. et al. (2016). Effects of titanium dioxide nanoparticles on red clover and its rhizobial symbiont. PLoS One 11 (5): 1–15.
81 Moll, J., Klingenfuss, F., Widmer, F. et al. (2017). Effects of titanium dioxide nanoparticles on soil microbial communities and wheat biomass. Soil Biology and Biochemistry 111: 85–93.
82 Mushtaq, Y.K. (2011). Effect of nanoscale Fe3O4, TiO2 and carbon particles on cucumber seed germination. Journal of Environmental Science and Health, Part A 46 (14): 1732–1735.
83 Navarro, E., Baun, A., Behra, R. et al. (2008). Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants, and fungi. Ecotoxicology 17 (5): 372–386.
84 Nemček, L. and Hagarová, I. (2020). The recent strategies employed in chemical analysis of contaminated waters, sediments and soils as a part of the remediation process. Extraction. In: Environmental Pollution and Remediation (ed. R. Prasad). Springer.
85 Okupnik, A. and Pflugmacher, S. (2016). Oxidative stress response of the aquatic macrophyte Hydrilla