Группа авторов

Wetland Carbon and Environmental Management


Скачать книгу

doi: https://doi.org/10.5194/bg‐5‐1475‐2008

      79 Loder, A. L., & Finkelstein, S. A. (2020). Carbon accumulation in freshwater marsh soils: A synthesis for temperate North America. Wetlands, 40, 1173–1187. https://doi.org/10.1007/s13157‐019‐01264‐6

      80 Loisel, J., van Bellen, S., Pelletier, L., Talbot, J., Hugelius, G., Karran, D., et al. (2017). Insights and issues with estimating northern peatland carbon stocks and fluxes since the Last Glacial Maximum. Earth‐Science Reviews, 165, 59–80. https://doi.org/10.1016/j.earscirev.2016.12.001

      81 MacDonald, G. M., Beilman, D. W., Kremenetski, K. V., Sheng, Y., Smith, L. C., & Velichko, A. A. (2006). Rapid early development of circumarctic peatlands and atmospheric CH4 and CO2 variations. Science, 314, 5797, 285–288. https://doi.org/10.1126/science.1131722

      82 Martin, A. R., Doraisami, M., & Thomas, S. C. (2018). Global patterns in wood carbon concentration across the world’s trees and forests. Nature Geoscience, 11, 12, 915–920. https://doi.org/10.1038/s41561‐018‐0246‐x

      83 Mcleod, E., Chmura, G. L., Bouillon, S., Salm, R., Björk, M., Duarte, C. M., et al. (2011). A blueprint for blue carbon: toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2. Frontiers in Ecology and the Environment, 9, 10, 552–560. https://doi.org/10.1890/110004

      84 Mcowen, C., Weatherdon, L., Bochove, J.‐W., Sullivan, E., Blyth, S., Zockler, C., et al. (2017). A global map of saltmarshes. Biodiversity Data Journal, 5, e11764. doi:10.3897/BDJ.5.e11764

      85 Miettinen, J., Hooijer, A., Vernimmen, R., Liew, S. C., & Page, S. E. (2017). From carbon sink to carbon source: extensive peat oxidation in insular Southeast Asia since 1990. Environmental Research Letters, 12, 024014. https://doi.org/10.1088/1748‐9326/aa5b6f

      86 Mitsch, W. J., Bernal, B., Nahlik, A. M., Mander, Ü., Zhang, L., Anderson, C. J., et al. (2013). Wetlands, carbon, and climate change. Landscape Ecology, 28, 4, 583–597. https://doi.org/10.1007/s10980‐012‐9758‐8

      87 National Wetlands Working Group. 1997. The Canadian Wetland Classification System, 2nd Edition. Warner, B.G. and C.D.A. Rubec (eds.), Wetlands Research Centre, University of Waterloo, Waterloo, ON, Canada. 68 p.

      88 Nellemann, C., Corcoran, E., Duarte, C. M., Valdes, L., De Young, C., Fonseca, L., & Grimsditch, G. (2009). Blue Carbon. A Rapid Response Assessment. United Nations Environment Programme, GRID‐Arendal.

      89 Osland, M. J., Enwright, N. M., Day, R. H., Gabler, C. A., Stagg, C. L., & Grace, J. B. (2016). Beyond just sea‐level rise: considering macroclimatic drivers within coastal wetland vulnerability assessments to climate change. Global Change Biology, 22, 1, 1–11. doi: 10.1111/gcb.13084

      90 Ouyang, X., & Lee, S. Y. (2014). Updated estimates of carbon accumulation rates in coastal marsh sediments. Biogeosciences, 11, 5057–5071. doi:10.5194/bg‐11‐5057‐2014

      91 Ouyang, X., & Lee, S. Y. (2019). Improved estimates on global carbon stock and carbon pools in tidal wetlands. Nature Communications, 11, 317. https://doi.org/10.1038/s41467‐019‐14120‐2

      92 Page, S., Wust, R., & Banks, C. (2010). Past and present carbon accumulation and loss in Southeast Asian peatlands. PAGES NEWS 18, 25–26. doi: 10.22498/pages.18.1.25

      93 Page, S. E., Rieley, J. O., & Banks, C. J. (2011). Global and regional importance of the tropical peatland carbon pool. Global Change Biology, 17, 798–818. https://doi.org/10.1111/j.1365‐2486.2010.02279

      94 Page, S. E., & Hooijer, A. (2016). In the line of fire: the peatlands of Southeast Asia. Philosophical Transactions of the Royal Society B: Biological Sciences, 371, 1696, 20150176. doi: 10.1098/rstb.2015.0176

      95 Paudel, R., Mahowald, N. M., Hess, P. G., Meng, L., & Riley, W. J. (2016). Attribution of changes in global wetland methane emissions from pre‐industrial to present using CLM4.5‐BGC. Environmental Research Letters, 11, 3, 034020. doi: 10.1088/1748‐9326/11/3/034020.

      96 Parthum, B., Pindilli, E., & Hogan, D. (2017). Benefits of the fire mitigation ecosystem service in the Great Dismal Swamp National Wildlife Refuge, Virginia, USA. Journal of Environmental Management, 203, 375–382. 10.1016/j.jenvman.2017.08.018

      97 Pekel, J. F., Cottam, A., Gorelick, N., & Belward, A. S. (2016). High‐resolution mapping of global surface water and its long‐term changes. Nature, 540, 7633, 418–422. https://doi.org/10.1038/nature20584

      98 Pendleton, L., Donato, D. C., Murray, B. C., Crooks, S., Jenkins, W. A., Sifleet, S., et al. (2012). Estimating global “blue carbon” emissions from conversion and degradation of vegetated coastal ecosystems. PloS one, 7, 9. https://doi.org/10.1371/journal.pone.0043542

      99 Pindilli, E., Sleeter, R., & Hogan, D. (2018). Estimating the societal benefits of carbon dioxide sequestration through peatland restoration. Ecological Economics, 154, 145–155. https://doi.org/10.1016/j.ecolecon.2018.08.002

      100 Pongratz, J., Dolman, H., Don, A., Erb, K. H., Fuchs, R., Herold, M., et al. (2018). Models meet data: Challenges and opportunities in implementing land management in Earth system models, Global Change Biology, 24, 4, 1470–1487. doi: 10.1111/gcb.13988.

      101 Poulter, B. (2005). Interactions between landscape disturbance and gradual environmental change: Plant community migration in response to fire and sea‐level rise. Ph.D. Dissertation, Duke University. Durham, NC.

      102 Poulter, B., Goodall, J. L., & Halpin, P. N. (2008). Applications of network analysis for adaptive management of artificial drainage systems in landscapes vulnerable to sea level rise. Journal of Hydrology, 357, 3–4, 207–217. https://doi.org/10.1016/j.jhydrol.2008.05.022

      103 Richards, D. R., Thompson, B. S., & Wijedasa, L. (2020). Quantifying net loss of global mangrove carbon stocks from 20 years of land cover change. Nature Communications, 11, 1, 1–7. https://doi.org/10.1038/s41467‐020‐18118‐z

      104 Richardson, C. J. (2003). Pocosins: hydrologically isolated or integrated wetlands on the landscape? Wetlands, 23, 3, 563–576. https://doi.org/10.1672/0277‐5212(2003)023[0563:PHIO IW]2.0.CO;2

      105 Riegel, J. B., Bernhardt, E., & Swenson, J. (2013). Estimating above‐ground carbon biomass in a newly restored coastal plain wetland using remote sensing. PLoS ONE, 8(6), e68251. doi: 10.1371/journal.pone.0068251.

      106 Rogers, K., Kelleway, J. J., Saintilan, N., Megonigal, J. P., Adams, J. B., Holmquist, J. R., et al. (2019). Wetland carbon storage controlled by millennial‐scale variation in relative sea‐level rise. Nature, 567, 91–95. doi:10.1038/s41586‐019‐0951‐7

      107 Roucoux, K. H., Lawson, I. T., Baker, T. R., Del Castillo Torres, D., Draper, F. C., Lähteenoja, O., et al. (2017). Threats to intact tropical peatlands and opportunities for their conservation: Tropical Peatlands. Conservation Biology, 31, 1283–1292. https://doi.org/10.1111/cobi.12925

      108 Roulet, N. T., Lafleur, P. M., Richard, P. J., Moore, T. R., Humphreys, E. R., & Bubier, J. I. L. L. (2007). Contemporary carbon