Группа авторов

Nanotechnology in Medicine


Скачать книгу

M., Reddy, G.B., Kim, T.H. et al. (2019). Doxorubicin‐carboxymethyl xanthan gum capped gold nanoparticles: microwave synthesis, characterization, and anti‐cancer activity. Carbohydrate Polymers 115511 https://doi.org/10.1016/j.carbpol.2019.115511.

      4 Andrady, A.L. and Neal, M.A. (2009). Applications and societal benefits of plastics. Philosophical Transactions of the Royal Society B: Biological Sciences 364: 1977–1984.

      5 Bakhsheshi‐Rad, H.R., Hadisi, Z., Ismail, A.F. et al. (2019). In vitro and in vivo evaluation of chitosan‐alginate/gentamicin wound dressing nanofibrous with high antibacterial performance. Polymer Testing 106298 https://doi.org/10.1016/j.polymertesting.2019.106298.

      6 Barata‐Silva, C., Mitri, S., Pavesi, T. et al. (2014). Benzeno: reflexos sobre a saúde pública, presença ambiental e indicadores biológicos utilizados para a determinação da exposição. Cadernos Saúde Coletiva 22: 329–342. https://doi.org/10.1590/1414‐462X201400040006.

      7 Belgacem, M.N. and Gandini, A. (2008). Monomers, Polymers and Composites from Renewable Resources. Elsevier.

      8 Belsky, I., Gutnick, D., L., and Rosenberg, E. (1979). Emulsifier of Arthrobacter RAG‐1: determination of emulsifier‐bound fatty acids. FEBS Letters 101: 175–178.

      9 Bomfim, M.V.J., Abrantes, S.M.P., and Zamith, H.P.S. (2009). Estudos sobre a toxicologia da ε‐caprolactama. Brazilian Journal of Pharmaceutical Sciences 45 (1): 21–35. https://doi.org/10.1590/S1984‐82502009000100004.

      10 Borges, C. and Vendruscolo, C. (2008). Xanthan gum: characteristics and operational conditions of production. Semina: Ciências Biológicas e da Saúde 29: 171–188. ISSN: 1676‐5435.

      11 Campos‐Takaki, G.M., Dietrich, S.M.C., and Beakes, G.W. (2014). Cytochemistry, ultrastructure and X‐ray microanalysis methods applied to cell wall characterization of Mucoralean fungi strains. In: Microscopy: Advances in Scientific Research and Education (ed. A. Mendez‐Vilas), 121–127. Formatex.

      12 Cerniglia, C.E. (1984). Microbial metabolism of polycyclic aromatic hydrocarbons. Advances in Applied Microbiology 30: 31–37.

      13 Cerniglia, C.E. (1997). Fungal metabolism of polycyclic aromatic hydrocarbons: past, present and future applications in bioremediation. Journal of Industrial Microbiology and Biotechnology 19: 324–333.

      14 Cerniglia, C.E., White, G.L., and Hettich, R.H. (1985). Fungal metabolism and detoxification of polycyclic aromatic hydrocarbons. Archives of Microbiology 143: 105–110.

      15 Chaabane, L., Chahdoura, H., Mehdaoui, R. et al. (2020). Functionalization of developed bacterial cellulose with magnetite nanoparticles for nanobiotechnology and nanomedicine applications. Carbohydrate Polymers 116707 https://doi.org/10.1016/j.carbpol.2020.116707.

      16  Chaney, A.M. and Carlson, G.P. (1995). Comparison of rat hepatic and pulmonary microsomal metabolism of benzene and the lack of benzene induced pneumotoxicity and hepatotoxicity. Toxicology 104: 53–62.

      17 Cheng, Y., Yu, S., Wang, J. et al. (2012). In vitro and in vivo antitumor activity of doxorubicin‐loaded alginic‐acid‐based nanoparticles. Macromolecular Bioscience 12 (10): 1326–1335. https://doi.org/10.1002/mabi.201200165.

      18 Coates, J.D., Anderson, R.T., Woodward, J.C. et al. (1996). Anaerobic hydrocarbon degradation in petroleum contaminated harbor sediments under sulfate‐reducing and artificially imposed iron‐reducing conditions. Environmental Science and Technology 30: 2784–2789.

      19 Dhas, N.L., Ige, P.P., and Kudarha, R.R. (2015). Design, optimization and in‐vitro study of folic acid conjugated‐chitosan functionalized PLGA nanoparticle for delivery of bicalutamide in prostate cancer. Powder Technology 283: 234–245.

      20 Dougherty, D., Garte, S., Barchowsky, A. et al. (2008). NQO1, MPO, CYP2E1, GSTT1 and GSTM1 polymorphisms and biological effects of benzene exposure—a literature review. Toxicology Letters 182: 7–17.

      21 Drulis‐Kawa, Z. and Dorotkiewicz‐Jach, A. (2010). Liposomes as delivery systems for antibiotics. International Journal of Pharmaceutics 387: 187–198.

      22 Efthimiadou, E.K., Metaxa, A.F., and Kordas, G. (2014). Modified polysaccharides as drug delivery. Polysaccharides: 1–26. https://doi.org/10.1007/978‐3‐319‐03751‐6_23‐1.

      23 Eggers, J. and Steinbuchel, A. (2013). Poly(3‐Hydroxybutyrate) degradation in Ralstonia eutropha H16 is mediated stereoselectively to (S)‐3‐hydroxybutyryl coenzyme a (CoA) via crotonyl‐CoA. Journal of Bacteriology 195: 3213–3223. https://doi.org/10.1128/jb.00358‐13.

      24 Eroglu, M., Toksoy, O.E., Cansever, M.E., and Sennaroglu, B.M. (2017). Sugar based biopolymers in nanomedicine; new emerging era for cancer imaging and therapy. Current Topics in Medicinal Chemistry 17: 1507–1520.

      25 FAO (n.d.). Seaweeds used as a source of alginate. http://www.fao.org/3/y4765e/y4765e07.htm (accessed 18 December 2020).

      26 Franchetti, S.M.M. and Marconato, J.C. (2006). Polímeros biodegradáveis – uma solução parcial para diminuir a quantidade dos resíduos plásticos. Química Nova 29: 811–816.

      27 Gao, M., Coggin, A., Yagnik, K., and Teplitski, M. (2012). Role of specific quorum‐sensing signals in the regulation of exopolysaccharide II production within Sinorhizobium meliloti spreading colonies. PLoS One 7: e42611. https://doi.org/10.1371/jornal.pone.0042611.

      28 Garcia, F.G., Leyva, M.E., Queiroz, A.A.A., and Higa, O. (2009). Novas tendências dos polímeros epoxídicos: propriedades biológicas in vitro de formulações para aplicações médicas. Polímeros 19: 177–182. https://doi.org/10.1590/S0104‐14282009000300004.

      29 Gebhardt, M. and Geier, J. (1996). Evaluation of patch test results with denture material series. Contact Dermatitis 34: 191–195.

      30 Gorgieva, S. (2020). Bacterial cellulose as a versatile platform for research and development of biomedical materials. Processes 8: 624.

      31 Gorkovenko, A., Zhang, J., Gross, R., A. et al. (1997). Bioengineering of emulsifier structure: emulsan analogs. Canadian Journal of Microbiology 43: 384–390.

      32 Gupta, P., Pruthi, P.A., and Pruthi, V. (2019). Role of exopolysaccharides in biofilm formation. Introduction to Biofilm Engineering: 17–57. https://doi.org/10.1021/bk‐2019‐1323.ch002.

      33 Hammel, K.E. (1995). Mechanism for polycyclic aromatic hydrocarbon degradation by ligninolytic fungi. Environmental Health Perspectives 103: 41–43.

      34 Hartwig, A. (2010). The role of DNA repair in benzene‐induced carcinogenesis. Chemico‐Biological Interactions 184: 269–272.

      35 Helton, J. and Storrs, F. (1994). The burning mouth syndrome: lack of a role for contact urticaria and contact dermatitis. Journal of the American Academy of Dermatology 31: 201–205.

      36  Huang, G., Chen, X., and Huang, H. (2016). Chemical modifications and biological activities of polysaccharides. Current Drug Targets 17: 1799–1803. 27138762. https://doi.org/10.2174/1389450117666160502151004.

      37 Iguchi, M., Yamanaka, S., and Budhiono, A. (2000). Bacterial cellulose – a masterpiece of nature's arts. Journal of Materials Science 35: 261–270.

      38 Jacob,