Группа авторов

Diatom Morphogenesis


Скачать книгу

Adhiwibawa, M.A.S., Single cells diatom Chaetoceros muelleri investigated by homebuilt confocal fluorescence spectro-microscopy, in: Third International Seminar on Photonics, Optics, and Its Applications, A. Nasution and A.M. Hatta (Eds.), p. 11044, 2019.

      [1.4] Cohn, S.A., Manoylov, K.M., Gordon, R. (Eds.), Diatom Gliding Motility[DIGM, Volume in the series: Diatoms: Biology & Applications, series editors: Richard Gordon & Joseph Seckbach, In preparation], Wiley-Scrivener, Beverly, MA, USA, 2020.

      [1.5] Cox, E.J., Identification of Freshwater Diatoms from Live Material, Chapman & Hall, London, 1996.

      [1.6] Diatom Flora of Britain and Ireland, Glossary, Wales, UK, 2020, https://naturalhistory.museumwales.ac.uk/diatoms

      [1.7] Diatoms of North America, Glossary, USA, 2020, https://diatoms.org/glossary.

      [1.8] Falkowski, P.G., Barber, R.T., Smetacek, V., Biogeochemical controls and feedbacks on ocean primary production. Science, 281, 5374, 200–206, 1998.

      [1.10] Gordon, R., Kling, H.J., Sterrenburg, F.A.S., A guide to the diatom literature for diatom nanotechnologists. J. Nanosci. Nanotechnol., 5, 1, 175–178, 2005.

      [1.11] Kaczmarska, I., Bates, S.S., Ehrman, J.M., Léger, C., Fine structure of the gamete, auxospore and initial cell in the pennate diatom Pseudo-nitzschia multiseries (Bacillariophyta). Nova Hedwig., 71, 3–4, 337–357, 2000.

      [1.12] Molino, P.J. and Wetherbee, R., The biology of biofouling diatoms and their role in the development of microbial slimes. Biofouling, 24, 5, 365–379, 2008.

      [1.13] Romann, J., Valmalette, J.C., Royset, A., Einarsrud, M.A., Optical properties of single diatom frustules revealed by confocal microspectroscopy. Opt. Lett., 40, 5, 740–743, 2015.

      [1.14] Sato, S., Nanjappa, D., Dorrell, R.G., Vieira, F.R.J., Kazamia, E., Tirichine, L., Veluchamy, A., Heilig, R., Aury, J.-M., Jaillon, O., Wincker, P., Fussy, Z., Obornik, M., Munoz-Gomez, S.A., Mann, D.G., Bowler, C., Zingone, A., Genome-enabled phylogenetic and functional reconstruction of an araphid pennate diatom Plagiostriata sp. CCMP470, previously assigned as a radial centric diatom, and its bacterial commensal. Sci. Rep., 10, 1, 9449, 2020.

      [1.15] Smol, J.P. and Stoermer, E.F., Glossary, acronyms, and abbreviations, in: The Diatoms: Applications for the Environmental and Earth Sciences, 2nd, J.P. Smol and E.F. Stoermer (Eds.), pp. 614–654, Cambridge University Press, Cambridge, 2010.

      [1.16] Spaulding, S., Esposito, R., Lubinski, D., Horn, S., Cox, M., McKnight, D., Alger, A., Hall, B., Mayernick, M., Whittaker, T., Yang, C., Antarctic Freshwater Diatoms: Glossary, 2009, http://huey.colorado.edu/diatoms/about/glossary.php.

      [1.17] Tiffany, M.A. and Nagy, S.S., The beauty of diatoms[Chapter 3], in: Diatoms: Fundamentals & Applications[DIFA, Volume 1 in the series: Diatoms: Biology & Applications, series editors: Richard Gordon & Joseph Seckbach], J. Seckbach and R. Gordon (Eds.), pp. 31–40, Wiley-Scrivener, Beverly, MA, USA, 2019.

      [1.18] Witkowski, A., Gomes, A., Mann, D.G., Trobajo, R., Li, C.L., Barka, F., Gusev, E., Dąbek, P., Grzonka, J., Kurzydłowski, K.J., Zglobicka, I., Harrison, M., Boski, T., Simonsenia aveniformis sp. nov. (Bacillariophyceae), molecular phylogeny and systematics of the genus, and a new type of canal raphe system. Sci. Rep., 5, #17115, 2015.

      [1.19] Tiffany, M.A., Epizoic and Epiphytic Diatoms, in: The Diatom World. Cellular Origin, Life in Extreme Habitats and Astrobiology, vol. 19, J. Seckbach and P. Kociolek (Eds.), Springer, Dordrecht, 2011.

      [1.20] Gillard, J., Frenkel, J., Devos, V., Sabbe, K., Paul, C., Rempt, M., Inz, D., Pohnert, G., Vuylsteke, M., Vyverman, W., Metabolomics Enables the Structure Elucidation of a Diatom Sex Pheromone. Angew. Commun., 52, 3, 1056–1056, 2013.

      [1.21] Bedoshvili, Y.D. and Likhoshway, Y.V., Cellular Mechanisms of Diatom Valve Morphogenesis, in: Diatoms: Fundamentals and Applications, Seckbach, J. and Gordon, R. (Eds.), 2020.

      [1.22] Anonymous, Two letters from a gentleman in the country, relating to Mr. Leuwenhoeck’s letter in Transaction, No. 283. Philos. Trans. R. Soc. London, 23, 288, 1494, 1703.

      [1.23] Bukhtiyarova, L.N., The genus Eunotia Ehrenb. (Bacillariophyta) in the Cheremsky Nature Reserve, Ukrainian Polissya, and refined terminology relevant to the raphe system morphology. PhytoKeys, 128, 1–31, 2019.

      [1.24] Sanderson, J.B., The historical use of diatoms as test-objects for Transmission electron microscopy. Quekett J. Microsc., 37, 467–475, 1995.

      [1.26] Desikachary, T.V., Electron Microscope Studies On Diatoms. J. R. Microsc. Soc., 76, 1–2, 9–36, 1956.

      [1.27] Krause, F., Elektronoptische Aufnahmen von Diatomeen mit dem magnetischen Elektronenmikroskop. Z. Phys., 102, 417–422, 1936.

      [1.28] Cox, E.J., Pore occlusions in raphid diatoms – a reassessment of their structure and terminology. Diatom, 20, 33–46, 2004.

      [1.29] Erni, R., Rossell, M.D., Kisielowski, C., Dahmen, U., Atomic-Resolution Imaging with a Sub-50-pm Electron Probe. Phys. Rev. Lett., 102, 9, 096101, 1–10, 2009.

      [1.30] Ferrara, M., Tommasi, E.D., Coppola, G., Stefano, L.D., Rea, I., Dardano, P., Diatom Valve Three-Dimensional Representation: A New Imaging Method Based on Combined Microscopies. Int. J. Mol. Sci., 17, 10, 1645, 2016.

      [1.31] Ghobara, M.M. and Mousa, A.M., Diatomite in use: Nature, modification, commercial applications, and prospective trends. In: Diatoms: Fundamentals & Applications [DIFA, Volume 1 in the series: Diatoms: Biology & Applications, series editors: Richard Gordon & Joseph Seckbach]. J. Seckbach and R. Gordon, (eds.) Wiley-Scrivener, Beverly, MA, USA, pp. 471–510, 2019.

      [1.32] Hildebrand, M., Kim, S., Shi, D., Scott, K., Subramaniam, S., 3D imaging of diatoms with ion-abrasion scanning electron microscopy. J. Struct. Biol., 166, 3, 316–328, 2009.

      [1.33] Linder, A., Colchero, J., Apell, H.-J., Marti, O., Mlynek, J., Scanning force microscopy of diatom shells. Ultramicroscopy, 42–44, 329–332, 1992.

      [1.34] Losic, D., Rosengarten, G., Mitchell, J.G., Voelcker, N.H., Pore Architecture of Diatom Frustules: Potential Nanostructured Membranes for Molecular and Particle Separations. J. Nanosci. Nanotechnol., 6, 4, 982–989, 2006.

      [1.35] Luís, A.T., Hlúbiková, D., Vaché, V., Choquet, P., Hoffmann, L., Ector, L., Atomic force microscopy (AFM) application to diatom study: review and perspectives. J. Appl. Phycol., 29, 6, 2989–3001, 2017.

      [1.36] Mann, D., Sieves and flaps: siliceous minutiae in the pores of raphid diatoms, in: Proceedings of the 6th Symposium on Recent and Fossil Diatoms, pp. 279–300, 1981.

      [1.37] Putten, E.G.V., Akbulut, D., Bertolotti, J., Vos, W.L., Lagendijk, A., Mosk, A.P., Scattering Lens Resolves Sub-100 nm Structures with Visible Light. Phys. Rev. Lett., 106, 19, 193905, 1–4, 2011.

      [1.38] Round, F.E., Crawford, R.M., Mann, D.G., The Diatoms: Biology and Morphology of the Genera, p. 747, Cambridge University Press, Bath, 1990.

      [1.39] Roussel, L.Y., Stokes, D.J., Gestmann, I., Darus,