Группа авторов

Materials for Solar Energy Conversion


Скачать книгу

dot size, it influences energy levels and band gaps [22]. Dots are grownup with different sizes and influencing band gaps without effecting materials and building techniques [8]. Different blending duration and temperatures affect wet chemistry preparations. Solar cells needed quantum dots for adjusting band gap. In conventional methods of adjusting band gap, using lead sulfide as mono junction implementation is difficult [2]. Half of the solar energy attained to the earth surface is mostly near to the infrared region. The quantum dot PV cells makes infrared reachable [9].

      1. Bagher, A.M., Vahid, M.M.A., Mohsen, M., Types of solar cells and application. Am. J. Opt. Photonics, 3, 5, 94–113, 2015.

      2. Baskoutas, S. and Terzis, A.F., Size-dependent band gap of colloidal quantum dots. J. Appl. Phys., 99, 1, 013708, 2006.

      3. Chen, S., Gong, X., Walsh, A., Wei, S.-H., Crystal and electronic band structure of Cu 2 ZnSn X 4 (X= S and Se) photovoltaic absorbers: First-principles insights. Appl. Phys. Lett., 94, 4, 041903, 2009.

      4. Collavini, S., Völker, S.F., Delgado, J.L., Understanding the outstanding power conversion efficiency of perovskite-based solar cells. Angew. Chem. Int. Ed., 54, 34, 9757–9759, 2015.

      5. de Wild-Scholten, M.M., Energy payback time and carbon footprint of commercial photovoltaic systems. Sol. Energy Mater. Sol. Cells, 119, 296–305, 2013.

      6. Strümpel, C., McCann, M., Beaucarne, G., Arkhipov, V., Slaoui, A., Švrček, V., Del Cañizo, C., Tobias, I., Modifying the solar spectrum to enhance silicon solar cell efficiency—An overview of available materials. Sol. Energy Mater. Sol. Cells., 15, 91, 4, 238–249, 2007.

      7. Fthenakis, V.M., Life cycle impact analysis of cadmium in CdTe PV production. Renewable Sustainable Energy Rev., 8, 4, 303–334, 2004.

      8. Gevorgyan, S.A., Madsen, M.V., Dam, H.F., Jørgensen, M., Fell, C.J., Anderson, K.F., Elschner, A., Interlaboratory outdoor stability studies of flexible roll-to-roll coated organic photovoltaic modules: Stability over 10,000 h. Sol. Energy Mater. Sol. Cells, 116, 187–196, 2013.

      9. Ghawade, S.P., Deshmukh, A.D., Deshmukh, K.A., Dhoble, S., The rise of solar cells. Recent Adv. Photovoltaics, 17, 1–38, 2017.

      10. Hagfeldt, A. and Grätzel, M., Molecular photovoltaics. Acc. Chem. Res., 33, 5, 269–277, 2000.

      11. Jacobson, M.Z., Review of solutions to global warming, air pollution, and energy security. Energy Environ. Sci., 2, 2, 148–173, 2009.

      12. Jorgensen, M., Norrman, K., Krebs, F., Stability/degradation of polymer solar cells. Sol. Energy Mater. Sol. Cells, 5, 92, 686, 2008, https://doi.org/10.1016/j. solmat.

      13. Kaneza, N., Zhang, J., Liu, H., Archana, P.S., Shan, Z., Vasiliu, M., Schmehl, R.H., Electrochemical and spectroscopic properties of boron dipyrromethene-thiophene-triphenylamine-based dyes for dye-sensitized solar cells. J. Phys. Chem. C, 120, 17, 9068–9080, 2016.

      14. Kojima, A., Teshima, K., Shirai, Y., Tsutomu Miyasaka Organo metal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells. J. Am. Chem. Soc., 131, 17, 6050–6051, 2009.

      16. Mathews, I., O’Mahony, D., Corbett, B., Morrison, A.P., tteoretical performance of multi-junction solar cells combining III-V and Si materials. Opt. Express, 20, 105, A754-A764, 2012.

      17. Milliron, D.J., Gur, I., Alivisatos, A.P., Hybrid organic–nanocrystal solar cells. MRS Bull., 30, 1, 41–44, 2005.

      18. Jelle, B.P., Breivik, C., Røkenes, H.D., Building integrated photovoltaic products: A state-of-the-art review and future research opportunities. Sol. Energy Mater. Sol. Cells., 1, 100, 69–96, 2012.

      19. Notarianni, M., Vernon, K., Chou, A., Aljada, M., Liu, J., Motta, N., Plasmonic effect of gold nanoparticles in organic solar cells. Sol. Energy, 106, 23–37, 2014.

      20. Peng, J., Lu, L., Yang, H., Review on life cycle assessment of energy payback and greenhouse gas emission of solar photovoltaic systems. Renewable Sustainable Energy Rev., 19, 255–274, 2013.

      21. Philipps, S.P., Bett, A.W., Horowitz, K., Kurtz, S., Current status of concentrator photovoltaic (CPV) technology, National Renewable Energy Lab.(NREL), Golden, CO (United States), 2015.

      22. Po, R., Carbonera, C., Bernardi, A., Tinti, F., Camaioni, N., Polymer-and carbon-based electrodes for polymer solar cells: Toward low-cost, continuous fabrication over large area. Sol. Energy Mater. Sol. Cells, 100, 97–114, 2012.

      23. Ramrakhiani, M., Dubey, S., Waxar, H., Kushwaha, K.K., Singh, P., Basic principles and theory of the photovoltaic effect. Materials Research Foundations, United States of America, 2017.

      24. Shukla, A.K., Sudhakar, K., Baredar, P., A comprehensive review on design of building integrated photovoltaic system. Energy Build., 128, 99–110, 2016.

      25. Shukla, A.K., Sudhakar, K., Baredar, P., Simulation and performance analysis of 110 kWp grid-connected photovoltaic system for residential building in India: A comparative analysis of various PV technology. Energy Rep., 2, 82–88, 2016.

      26. Shukla, K., Rangnekar, S., Sudhakar, K., Comparative study of isotropic and anisotropic sky models to estimate solar radiation incident on tilted surface: A case study for Bhopal, India. Energy Rep., 1, 96–103, 2015.

      27. Solangi, K., Islam, M., Saidur, R., Rahim, N., Fayaz, H., A review on global solar energy policy. Renewable Sustainable Energy Rev., 15, 4, 2149–2163, 2011.

      28. Strong, S., Building integrated photovoltaics (BIPV), p. 9, Whole building design guide, Washington, D.C. 20005–4950, 2010.

      29. Tributsch, H., Dye sensitization solar cells: a critical assessment of the learning curve. Coord. Chem. Rev., 248, 13–14, 1511–1530, 2004.

      30. Lian, J., Wang, Q., Yuan, Y., Shao, Y., Huang, J. Organic solvent vapor sensitive methylammonium lead trihalide film formation for efficient hybrid perovskite solar cells. J. Mater. Chem. A., 3, 17, 9146–9151, 2015.

      1 *Corresponding author: [email protected]

      Конец ознакомительного фрагмента.

      Текст предоставлен ООО «ЛитРес».

      Прочитайте эту книгу целиком, купив полную легальную версию на ЛитРес.

      Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal,