Группа авторов

Polymer Composites for Electrical Engineering


Скачать книгу

discharge energy density and efficiency in nanocomposite film capacitors utilizing two‐dimensional NaNbO3@ Al2O3 platelets. Nanoscale 11 (21): 10546–10554.

      40 40 Bao, Z., Hou, C., Shen, Z. et al. (2020). Negatively charged nanosheets significantly enhance the energy‐storage capability of polymer‐based nanocomposites. Advanced Materials 32: 1907227.

      41 41 Zhu, Y., Yao, H., Jiang, P. et al. (2018). Two‐dimensional high‐k nanosheets for dielectric polymer nanocomposites with ultrahigh discharged energy density. The Journal of Physical Chemistry C 122 (32): 18282–18293.

      42 42 Ma, Y., Tong, W., Wang, W. et al. (2018). Montmorillonite/PVDF‐HFP‐based energy conversion and storage films with enhanced piezoelectric and dielectric properties. Composites Science and Technology 168: 397–403.

      43 43 Xie, Y., Wang, J., Yu, Y. et al. (2018). Enhancing breakdown strength and energy storage performance of PVDF‐based nanocomposites by adding exfoliated boron nitride. Applied Surface Science 440: 1150–1158.

      44 44 Wang, Y., Li, Z., Wu, C. et al. (2020). High‐temperature dielectric polymer nanocomposites with interposed montmorillonite nanosheets. Chemical Engineering Journal 401: 126093.

      45 45 Pohl, H.A. and Crane, J.S. (1972). Dielectrophoretic force. Journal of Theoretical Biology 37 (1): 1–13.

      46 46 Yao, S.H., Yuan, J.K., Zhou, T. et al. (2011). Stretch‐modulated carbon nanotube alignment in ferroelectric polymer composites: characterization of the orientation state and its influence on the dielectric properties. The Journal of Physical Chemistry C 115 (40): 20011–20017.

      47 47 Agarwal, S., Greiner, A., and Wendorff, J.H. (2013). Functional materials by electrospinning of polymers. Progress in Polymer Science 38 (6): 963–991.

      48 48 Banerjee, P., Perez, I., Henn‐Lecordier, L. et al. (2009). Nanotubular metal‐insulator‐metal capacitor arrays for energy storage. Nature Nanotechnology 4 (5): 292–296.

      49 49 Liao, S., Shen, Z., Pan, H. et al. (2017). A surface‐modified TiO2 nanorod array/P (VDF‐HFP) dielectric capacitor with ultra high energy density and efficiency. Journal of Materials Chemistry C 5 (48): 12777–12784.

      50 50 Zeng, X., Ye, L., Yu, S. et al. (2015). Facile preparation of superelastic and ultralow dielectric boron nitride nanosheet aerogels via freeze‐casting process. Chemistry of Materials 27 (17): 5849–5855.

      51 51 Li, B., Xidas, P.I., and Manias, E. (2018). High breakdown strength polymer nanocomposites based on the synergy of nanofiller orientation and crystal orientation for insulation and dielectric applications. ACS Applied Nano Materials 1 (7): 3520–3530.

      52 52 Xie, B., Zhang, H., Zhang, Q. et al. (2017). Enhanced energy density of polymer nanocomposites at a low electric field through aligned BaTiO3 nanowires. Journal of Materials Chemistry A 5 (13): 6070–6078.

      53 53 Luo, H., Zhou, X., Ellingford, C. et al. (2019). Interface design for high energy density polymer nanocomposites. Chemical Society Reviews 48 (16): 4424–4465.

      54 54 Zhou, Y., He, J., Hu, J. et al. (2016). Surface‐modified MgO nanoparticle enhances the mechanical and direct‐current electrical characteristics of polypropylene/polyolefin elastomer nanodielectrics. Journal of Applied Polymer Science 133 (1): 42863.

      55 55 Zhang, X., Li, B.W., Dong, L. et al. (2018). Superior energy storage performances of polymer nanocomposites via modification of filler/polymer interfaces. Advanced Materials Interfaces 5 (11): 1800096.

      56 56 Zhou, Y., Dang, B., Wang, H. et al. (2018). Polypropylene‐based ternary nanocomposites for recyclable high‐voltage direct‐current cable insulation. Composites Science and Technology 165: 168–174.

      57 57 Hu, P., Gao, S., Zhang, Y. et al. (2018). Surface modified BaTiO3 nanoparticles by titanate coupling agent induce significantly enhanced breakdown strength and larger energy density in PVDF nanocomposite. Composites Science and Technology 156: 109–116.

      58 58 Huang, X. and Jiang, P. (2015). Core‐shell structured high‐k polymer nanocomposites for energy storage and dielectric applications. Advanced Materials 27 (3): 546–554.

      59 59 Paniagua, S.A., Kim, Y., Henry, K. et al. (2014). Surface‐initiated polymerization from barium titanate nanoparticles for hybrid dielectric capacitors. ACS Applied Materials & Interfaces 6 (5): 3477–3482.

      60 60 Yang, K., Huang, X., Xie, L. et al. (2012). Core‐shell structured polystyrene/BaTiO3 hybrid nanodielectrics prepared by in situ RAFT polymerization: a route to high dielectric constant and low loss materials with weak frequency dependence. Macromolecular Rapid Communications 33 (22): 1921–1926.

      61 61 Tchoul, M.N., Fillery, S.P., Koerner, H. et al. (2010). Assemblies of titanium dioxide‐polystyrene hybrid nanoparticles for dielectric applications. Chemistry of Materials 22 (5): 1749–1759.

      62 62 Li, Z., Fredin, L.A., Tewari, P. et al. (2010). In situ catalytic encapsulation of core‐shell nanoparticles having variable shell thickness: dielectric and energy storage properties of high‐permittivity metal oxide nanocomposites. Chemistry of Materials 22 (18): 5154–5164.

      63 63 Zhu, M., Huang, X., Yang, K. et al. (2014). Energy storage in ferroelectric polymer nanocomposites filled with core‐shell structured polymer@BaTiO3 nanoparticles: understanding the role of polymer shells in the interfacial regions. ACS Applied Materials & Interfaces 6 (22): 19644–19654.

      64 64 Xie, L., Huang, X., Huang, Y. et al. (2013). Core@double‐shell structured BaTiO3‐polymer nanocomposites with high dielectric constant and low dielectric loss for energy storage application. Journal of Physical Chemistry C 117 (44): 22525–22537.

      65 65 Zhou, Y., Hu, J., Dang, B. et al. (2016). Mechanism of highly improved electrical properties in polypropylene by chemical modification of grafting maleic anhydride. Journal of Physics D: Applied Physics 49 (41): 415301.

      66 66 Meunier, M., Quirke, N., and Aslanides, A. (2001). Molecular modeling of electron traps in polymer insulators: chemical defects and impurities. The Journal of Chemical Physics 115 (6): 2876–2881.

      67 67 Yuan, H., Zhou, Y., Zhu, Y. et al. (2020). Origins and effects of deep traps in functional group grafted polymeric dielectric materials. Journal of Physics D: Applied Physics 53 (47): 475301.

      68 68 Chen, L., Batra, R., Ranganathan, R. et al. (2018). Electronic structure of polymer dielectrics: the role of chemical and morphological complexity. Chemistry of Materials 30 (21): 7699–7706.

      69 69 Zhou, Y., Yuan, C., Wang, S. et al. (2020). Interface‐modulated nanocomposites based on polypropylene for high‐temperature energy storage. Energy Storage Materials 28: 255–263.

      70 70 He, D., Wang, Y., Chen, X. et al. (2017). Core‐shell structured BaTiO3@ Al2O3 nanoparticles in polymer composites for dielectric loss suppression and breakdown strength enhancement. Composites Part A: Applied Science and Manufacturing 93: 137–143.

      71 71 Bi, K., Bi, M., Hao, Y. et al. (2018). Ultrafine core‐shell BaTiO3@SiO2 structures for nanocomposite capacitors with high energy density. Nano Energy 51: 513–523.

      72 72 He, D., Wang, Y., Song, S. et al. (2017). Significantly enhanced dielectric performances and high thermal conductivity in poly(vinylidene fluoride)‐based composites enabled by SiC@SiO2 core‐shell whiskers alignment. ACS Applied Materials & Interfaces 9 (51): 44839–44846.

      73 73 Zhang, X., Shen, Y., Zhang, Q. et al. (2015). Ultrahigh energy density of polymer nanocomposites containing BaTiO3@TiO2 nanofibers by atomic‐scale interface engineering. Advanced Materials 27 (5): 819–824.

      74 74 Zhang, X., Shen, Y., Xu, B. et al. (2016). Giant energy density and improved discharge efficiency of solution‐processed polymer nanocomposites for dielectric energy storage. Advanced Materials 28 (10): 2055–2061.

      75 75 Li, Q., Han, K., Gadinski, M.R. et al. (2014). High energy and power density capacitors from solution‐processed ternary ferroelectric polymer nanocomposites. Advanced Materials 26 (36): 6244–6249.

      76 76 Li, H., Ren, L., Ai, D. et al. (2020). Ternary polymer nanocomposites with concurrently enhanced dielectric constant