Группа авторов

Pathology of Genetically Engineered and Other Mutant Mice


Скачать книгу

Q., Philip, V.M., Stearns, T.M. et al. (2019). Quantitative trait locus and integrative genomics revealed candidate modifier genes for ectopic mineralization in mouse models of pseudoxanthoma elasticum. J. Invest. Dermatol. 139 (12): 2447–2457.e7.

      43 43 Montagutelli, X., Hogan, M.E., Aubin, G. et al. (1996). Lanceolate hair (lah): a recessive mouse mutation with alopecia and abnormal hair. J. Invest. Dermatol. 107 (1): 20–25.

      44 44 Sundberg, J.P., Boggess, D., Bascom, C. et al. (2000). Lanceolate hair‐J (lahJ): a mouse model for human hair disorders. Exp. Dermatol. 9 (3): 206–218.

      45 45 Chavanas, S., Bodemer, C., Rochat, A. et al. (2000). Mutations in SPINK5, encoding a serine protease inhibitor, cause Netherton syndrome. Nat. Genet. 25 (2): 141–142.

      46 46 Kljuic, A., Bazzi, H., Sundberg, J.P. et al. (2003). Desmoglein 4 in hair follicle differentiation and epidermal adhesion: evidence from inherited hypotrichosis and acquired pemphigus vulgaris. Cell 113 (2): 249–260.

      47 47 Price, V.H., Odom, R.B., Ward, W.H., and Jones, F.T. (1980). Trichothiodystrophy: sulfur‐deficient brittle hair as a marker for a neuroectodermal symptom complex. Arch. Dermatol. 116 (12): 1375–1384.

      48 48 Gummer, C.L., Dawber, R.P., and Price, V.H. (1984). Trichothiodystrophy: an electron‐histochemical study of the hair shaft. Br. J. Dermatol. 110 (4): 439–449.

      49 49 Metze, D. and Oji, V. (2020). Disorders of keratinization. In: McKee's Pathology of the Skin. 1., 5e (eds. E. Calonje, T. Brenn, A. Lazar and S.D. Billings), 53–117. China: Elsevier.

      50 50 Mecklenburg, L., Paus, R., Halata, Z. et al. (2004). FOXN1 is critical for onycholemmal terminal differentiation in nude (Foxn1) mice. J. Invest. Dermatol. 123 (6): 1001–1011.

      51 51 Davisson, M.T., Bergstrom, D.E., Reinholdt, L.G., and Donahue, L.R. (2012). Discovery genetics – the history and future of spontaneous mutation research. Curr. Protoc. Mouse Biol. 2: 103–118.

      52 52 Probst, F.J. and Justice, M.J. (2010). Mouse mutagenesis with the chemical supermutagen ENU. Methods Enzymol. 477: 297–312.

      53 53 Arnold, C.N., Barnes, M.J., Berger, M. et al. (2012). ENU‐induced phenovariance in mice: inferences from 587 mutations. BMC Res. Notes 5: 577.

      54 54 Sabrautzki, S., Rubio‐Aliaga, I., Hans, W. et al. (2012). New mouse models for metabolic bone diseases generated by genome‐wide ENU mutagenesis. Mamm. Genome 23 (7‐8): 416–430.

      55 55 Potter, P.K., Bowl, M.R., Jeyarajan, P. et al. (2016). Novel gene function revealed by mouse mutagenesis screens for models of age‐related disease. Nat. Commun. 7: 12444.

      56 56 Wang, T., Bu, C.H., Hildebrand, S. et al. (2018). Probability of phenotypically detectable protein damage by ENU‐induced mutations in the Mutagenetix database. Nat. Commun. 9 (1): 441.

      57 57 Fairfield, H., Srivastava, A., Ananda, G. et al. (2015). Exome sequencing reveals pathogenic mutations in 91 strains of mice with Mendelian disorders. Genome Res. 25 (7): 948–957.

      58 58 Palmer, K., Fairfield, H., Borgeia, S. et al. (2016). Discovery and characterization of spontaneous mouse models of craniofacial dysmorphology. Dev. Biol. 415 (2): 216–227.

      59 59 Andrews, T.D., Whittle, B., Field, M.A. et al. (2012). Massively parallel sequencing of the mouse exome to accurately identify rare, induced mutations: an immediate source for thousands of new mouse models. Open Biol. 2 (5): 120061. https://doi.org/10.1098/rsob.120061.

      60 60 Gondo, Y. (2008). Trends in large‐scale mouse mutagenesis: from genetics to functional genomics. Nat. Rev. Genet. 9 (10): 803–810.

      61 61 Chang, H., Pan, Y., Landrette, S. et al. (2019). Efficient genome‐wide first‐generation phenotypic screening system in mice using the piggyBac transposon. Proc. Natl. Acad. Sci. U.S.A. 116 (37): 18507–18516.

      62 62 Birling, M.C., Herault, Y., and Pavlovic, G. (2017). Modeling human disease in rodents by CRISPR/Cas9 genome editing. Mamm. Genome 28 (7‐8): 291–301.

      63 63 Brehm, M.A., Wiles, M.V., Greiner, D.L., and Shultz, L.D. (2014). Generation of improved humanized mouse models for human infectious diseases. J. Immunol. Methods 410: 3–17.

      64 64 Hosur, V., Low, B.E., Avery, C. et al. (2017). Development of humanized mice in the age of genome editing. J. Cell. Biochem. 118 (10): 3043–3048.

      65 65 Low, B.E., Krebs, M.P., Joung, J.K. et al. (2014). Correction of the Crb1rd8 allele and retinal phenotype in C57BL/6N mice via TALEN‐mediated homology‐directed repair. Invest. Ophthalmol. Vis. Sci. 55 (1): 387–395.

      66 66 Brommage, R., Powell, D.R., and Vogel, P. (2019). Predicting human disease mutations and identifying drug targets from mouse gene knockout phenotyping campaigns. Dis. Models Mech. 12 (5).

      67 67 Bradley, A., Anastassiadis, K., Ayadi, A. et al. (2012). The mammalian gene function resource: the International Knockout Mouse Consortium. Mamm. Genome 23 (9‐10): 580–586.

      68 68 Meehan, T.F., Conte, N., West, D.B. et al. (2017). Disease model discovery from 3,328 gene knockouts by The International Mouse Phenotyping Consortium. Nat. Genet. 49 (8): 1231–1238.

      69 69 Kaloff, C., Anastassiadis, K., Ayadi, A. et al. (2016). Genome wide conditional mouse knockout resources. Drug Discovery Today 20: 3–12.

      70 70 Dickinson, M.E., Flenniken, A.M., Ji, X. et al. (2016). High‐throughput discovery of novel developmental phenotypes. Nature 537 (7621): 508–514.

      71 71 Moore, B.A., Leonard, B.C., Sebbag, L. et al. (2018). Identification of genes required for eye development by high‐throughput screening of mouse knockouts. Commun. Biol. 1: 236.

      72 72 Rozman, J., Rathkolb, B., Oestereicher, M.A. et al. (2018). Identification of genetic elements in metabolism by high‐throughput mouse phenotyping. Nat. Commun. 9 (1): 288.

      73 73 Sundberg, J.P., Dadras, S.S., Silva, K.A. et al. (2017). Systematic screening for skin, hair, and nail abnormalities in a large‐scale knockout mouse program. PLoS One 12 (7): e0180682.

      74 74 Smedley, D., Oellrich, A., Köhler, S. et al. (2013). PhenoDigm: analyzing curated annotations to associate animal models with human diseases. Database 2013: bat025. https://doi.org/10.1093/database/bat025.

      75 75 Hoehndorf, R., Schofield, P.N., and Gkoutos, G.V. (2013). An integrative, translational approach to understanding rare and orphan genetically based diseases. Interface Focus 3 (2): 20120055.

      76 76 Hoehndorf, R., Schofield, P.N., and Gkoutos, G.V. (2011). PhenomeNET: a whole‐phenome approach to disease gene discovery. Nucleic Acids Res. 39 (18): e119.

      77 77 Klement, J.F., Matsuzaki, Y., Jiang, Q.J. et al. (2005). Targeted ablation of the Abcc6 gene results in ectopic mineralization of connective tissues. Mol. Cell. Biol. 25 (18): 8299–8310.

      78 78 Gorgels, T.G., Hu, X., Scheffer, G.L. et al. (2005). Disruption of Abcc6 in the mouse: novel insight in the pathogenesis of pseudoxanthoma elasticum. Hum. Mol. Genet. 14 (13): 1763–1773.

      79 79 Berndt, A., Li, Q., Potter, C.S. et al. (2013). A single‐nucleotide polymorphism in the Abcc6 gene associates with connective tissue mineralization in mice similar to targeted models for pseudoxanthoma elasticum. J. Invest. Dermatol. 133 (3): 833–836.

      80 80 Hawkes, J.E., Adalsteinsson, J.A., Gudjonsson, J.E., and Ward, N.L. (2018). Research techniques made simple: murine models of human psoriasis. J. Invest. Dermatol. 138 (1): e1–e8.

      81 81 Jordan, C.T., Cao, L., Roberson, E.D. et al. (2012). Rare and common variants in CARD14, encoding an epidermal regulator of NF‐kappaB, in psoriasis. Am. J. Hum. Genet. 90 (5): 796–808.

      82 82 Jordan, C.T., Cao, L., Roberson, E.D. et al. (2012). PSORS2 is due to mutations in CARD14. Am. J. Hum. Genet. 90 (5): 784–795.

      83 83 Mellett, M., Meier, B., Mohanan, D. et al. (2018). CARD14 gain‐of‐function mutation alone is sufficient to drive IL‐23/IL‐17‐mediated psoriasiform skin inflammation in vivo. J. Invest. Dermatol.