Группа авторов

Pathology of Genetically Engineered and Other Mutant Mice


Скачать книгу

13 (3): 481–492.

      55 55 McLaren, A. (1965). Genetic and environmental effects on foetal and placental growth in mice. J. Reprod. Fertil. 9: 79–89.

      56 56 Tanaka, S., Oda, M., Toyoshima, Y. et al. (2001). Placentomegaly in cloned mouse concepti caused by expansion of the spongiotrophoblast layer. Biol. Reprod. 65 (6): 1813–1821.

      57 57 George, J.D. and Manson, J.M. (1986). Strain‐dependent differences in the metabolism of 3‐methylcholanthrene by maternal, placental, and fetal tissues of C57BL/6J and DBA/2J mice. Cancer Res. 46 (11): 5671–5675.

      58 58 Bolon, B., Newbigging, S., and Boyd, K.L. (2017). Pathology evaluation of developmental phenotypes in neonatal and juvenile mice. Curr. Protoc. Mouse Biol. 7 (3): 191–219.

      59 59 Ince, T.A., Ward, J.M., Valli, V.E. et al. (2008). Do‐it‐yourself (DIY) pathology. Nat. Biotechnol. 26 (9): 978–979. discussion 9.

      60 60 Bolon, B., Garman, R., Jensen, K. et al. (2006). A ‘best practices’ approach to neuropathologic assessment in developmental neurotoxicity testing—for today. Toxicol. Pathol. 34 (3): 296–313.

      61 61 Coan, P.M., Ferguson‐Smith, A.C., and Burton, G.J. (2004). Developmental dynamics of the definitive mouse placenta assessed by stereology. Biol. Reprod. 70 (6): 1806–1813.

      62 62 Weninger, W.J. and Geyer, S.H. (2008). Episcopic 3D imaging methods: tools for researching gene function. Curr. Genomics 9 (4): 282–289.

      63 63 Ruberte, J., Carretero, A., and Navarro, M. (2017). Morphological Mouse Phenotyping: Anatomy, Histology and Imaging. San Diego, CA: Academic Press (Elsevier).

      64 64 Tobita, K., Liu, X., and Lo, C.W. (2010). Imaging modalities to assess structural birth defects in mutant mouse models. Birth Defects Res. C Embryo Today 90 (3): 176–184.

      65 65 Cleary, J.O., Modat, M., Norris, F.C. et al. (2011). Magnetic resonance virtual histology for embryos: 3D atlases for automated high‐throughput phenotyping. NeuroImage 54 (2): 769–778.

      66 66 Yu, Q., Leatherbury, L., Tian, X., and Lo, C.W. (2008). Cardiovascular assessment of fetal mice by in utero echocardiography. Ultrasound Med. Biol. 34 (5): 741–752.

      67 67 Bolon, B., Gabrielson, K., Cole, S. et al. (2015). Three‐dimensional imaging in mouse developmental pathology studies. In: Pathology of the Developing Mouse: A Systematic Approach (ed. B. Bolon), 275–290. Boca Raton, FL: CRC Press (Taylor & Francis).

      68 68 Hsu, C.W., Wong, L., Rasmussen, T.L. et al. (2016). Three‐dimensional microCT imaging of mouse development from early post‐implantation to early postnatal stages. Dev. Biol. 419 (2): 229–236.

      69 69 Raghunathan, R., Singh, M., Dickinson, M.E., and Larin, K.V. (2016). Optical coherence tomography for embryonic imaging: a review. J. Biomed. Opt. 21 (5): 50902.

      70 70 Newbigging, S., Ward, J.M., and Bolon, B. (2015). Necropsy sampling and data collection for studying the anatomy, histology, and pathology of mouse development. In: Pathology of the Developing Mouse: A Systematic Approach (ed. B. Bolon), 133–173. Boca Raton, FL: CRC Press (Taylor & Francis).

      71 71 McKerlie, C., Newbigging, S., and Wood, G.A. (2015). Mouse developmental pathology assessments in high‐throughput phenogenomic facilities. In: Pathology of the Developing Mouse: A Systematic Approach (ed. B. Bolon), 377–404. Boca Raton, FL: CRC Press (Taylor & Francis).

      72 72 Bolon, B., Duryea, D., and Foley, J.F. (2015). Histotechnological processing of developing mice. In: Pathology of the Developing Mouse: A Systematic Approach (ed. B. Bolon), 195–210. Boca Raton, FL: CRC Press (Taylor & Francis).

      73 73 Adissu, H.A., Estabel, J., Sunter, D. et al. (2014). Histopathology reveals correlative and unique phenotypes in a high‐throughput mouse phenotyping screen. Dis. Models Mech. 7 (5): 515–524.

      74 74 Kimura, S., Hara, Y., Pineau, T. et al. (1996). The T/ebp null mouse: thyroid‐specific enhancer‐binding protein is essential for the organogenesis of the thyroid, lung, ventral forebrain, and pituitary. Genes Dev. 10 (1): 60–69.

      75 75 Min, H., Danilenko, D.M., Scully, S.A. et al. (1998). Fgf‐10 is required for both limb and lung development and exhibits striking functional similarity to Drosophila branchless. Genes Dev. 12 (20): 3156–3161.

      76 76 Gibson‐Corley, K.N., Olivier, A.K., and Meyerholz, D.K. (2013). Principles for valid histopathologic scoring in research. Vet. Pathol. 50 (6): 1007–1015.

      77 77 Boyd, K.L., Bolon, B., and Bounous, D.I. (2015). Clinical pathology analysis in developing mice. In: Pathology of the Developing Mouse: A Systematic Approach (ed. B. Bolon), 175–193. Boca Raton, FL: CRC Press (Taylor & Francis).

      78 78 Dickinson, M.E., Flenniken, A.M., Ji, X. et al. (2016). High‐throughput discovery of novel developmental phenotypes. Nature 537 (7621): 508–514. (Corrigendum: Nature 51 (7680): 398, 2017).

      79 79 International Mouse Phenotyping Consortium (IMPC) (2020). Pheno(type) search results: embryo. https://www.mousephenotype.org/data/search?term=embryo&type=pheno (accessed 15 July 2021).

      80 80 Palmer, A.K. (1972). Sporadic malformations in laboratory animals and their influence on drug testing. In: Drugs and Fetal Development (eds. M.A. Klingberg, A. Abramovici and J. Chemke), 45–60. New York: Plenum Press.

      81 81 The Jackson Laboratory. Mouse phenome database ‐ lethal phenotypes during embryogenesis 2001–2020. http://www.informatics.jax.org/vocab/mp_ontology/MP:0005380 (accessed 15 March 2020).

      82 82 Shepard, T.H. and Lemire, R.J. (2010). Catalog of Teratogenic Agents, 13e. Baltimore, MD: Johns Hopkins University Press.

      83 83 Szaba, F.M., Tighe, M., Kummer, L.W. et al. (2018). Zika virus infection in immunocompetent pregnant mice causes fetal damage and placental pathology in the absence of fetal infection. PLoS Pathog. 14 (4): e1006994.

      84 84 Kaufman, M., Nikitin, A.Y., and Sundberg, J.P. (2010). Histologic Basis of Mouse Endocrine System Development: A Comparative Analysis (ed. J.P. Sundberg). Boca Raton, FL: CRC Press (Taylor & Francis Group).

      85 85 Baldock, R., Bard, J.B., Davidson, D.R., and Morriss‐Kay, G. (2016). Kaufman's Atlas of Mouse Development Supplement: With Coronal Sections. San Diego, CA: Academic Press (Elsevier).

      86 86 Parker, G.A. and Picut, C.A. (2016). Atlas of Histology of the Juvenile Rat. San Diego, CA: Academic Press (Elsevier).

      87 87 Papaioannou, V.E. and Behringer, R.R. (2012). Early embryonic lethality in genetically engineered mice: diagnosis and phenotypic analysis. Vet. Pathol. 49 (1): 64–70.

      88 88 Wendling, O., Teletin, M., Ghyselinck, N.B., and Mark, M. (2011). Une procédure dédiée au phénotypage de souris porteuses de mutations ciblées, létales in utero ou à la naissance (“A procedure dedicated to the phenotyping of mice carrying targeted mutations, lethal in utero or at birth”) [original in French]. Rev. Fr. Histotechnol. 24 (1): 47–57.

      89 89 Bolon, B. and La Perle, K.D.M. (2015). Principles of experimental design for mouse developmental pathology studies. In: Pathology of the Developing Mouse: A Systematic Approach (ed. B. Bolon), 117–132. Boca Raton, FL: CRC Press (Taylor & Francis).

      90 90 Diewert, V.M. and Pratt, R.M. (1981). Cortisone‐induced cleft palate in A/J mice: failure of palatal shelf contact. Teratology 24 (2): 149–162.

      91 91 Diewert, V.M. (1982). A comparative study of craniofacial growth during secondary palate development in four strains of mice. J. Craniofacial Genet. Dev. Biol. 2 (4): 247–263.

      92 92 Hovland, D.N.J., Machado, A.F., Scott, W.J.J., and Collins, M.D. (1999). Differential sensitivity of the SWV and C57BL/6 mouse strains to the teratogenic action of single administrations of cadmium given throughout the period of anterior neuropore closure. Teratology 60 (1): 13–21.

      93 93 The Jackson Laboratory. Mouse phenome database ‐ prenatal lethality due to placental pathology 2001–2020.