Группа авторов

Pathology of Genetically Engineered and Other Mutant Mice


Скачать книгу

tract. Fertil. Steril. 29 (1): 72–74.

      43  Girardet, L., Augiere, C., Asselin, M.P., and Belleannee, C. (2019). Primary cilia: biosensors of the male reproductive tract. Andrology 7 (5): 588–602.

      44 Berbari, N.F., O'Connor, A.K., Haycraft, C.J., and Yoder, B.K. (2009). The primary cilium as a complex signaling center. Curr. Biol. 19 (13): R526–R535.

      45 Anvarian, Z., Mykytyn, K., Mukhopadhyay, S. et al. (2019). Cellular signalling by primary cilia in development, organ function and disease. Nat. Rev. Nephrol. 15 (4): 199–219.

      46 Pan, A., Chang, L., Nguyen, A., and James, A.W. (2013). A review of hedgehog signaling in cranial bone development. Front. Physiol. 4: 61.

      47 Olbrich, H., Fliegauf, M., Hoefele, J. et al. (2003). Mutations in a novel gene, NPHP3, cause adolescent nephronophthisis, tapeto‐retinal degeneration and hepatic fibrosis. Nat. Genet. 34 (4): 455–459.

      48 Otto, E.A., Schermer, B., Obara, T. et al. (2003). Mutations in INVS encoding inversin cause nephronophthisis type 2, linking renal cystic disease to the function of primary cilia and left‐right axis determination. Nat. Genet. 34 (4): 413–420.

      49 Loftus, H. and Ong, A.C. (2012). Cystic kidney diseases: many ways to form a cyst. Pediatr. Nephrol. 28: 33–49.

      50 Raghavan, V. and Weisz, O.A. (2016). Discerning the role of mechanosensors in regulating proximal tubule function. Am. J. Physiol. Renal Physiol. 310 (1): F1–F5.

      51 Luyten, A., Su, X., Gondela, S. et al. (2010). Aberrant regulation of planar cell polarity in polycystic kidney disease. J. Am. Soc. Nephrol. 21 (9): 1521–1532.

      52 Vogel, P., Gelfman, C.M., Issa, T. et al. (2015). Nephronophthisis and retinal degeneration in tmem218−/− mice: a novel mouse model for Senior–Loken syndrome? Vet. Pathol. 52 (3): 580–595.

      53 Bujakowska, K.M., Liu, Q., and Pierce, E.A. (2017). Photoreceptor cilia and retinal ciliopathies. Cold Spring Harbor Perspect. Biol. 9 (10): 1–27.

      54 Chang, B., Khanna, H., Hawes, N. et al. (2006). In‐frame deletion in a novel centrosomal/ciliary protein CEP290/NPHP6 perturbs its interaction with RPGR and results in early‐onset retinal degeneration in the rd16 mouse. Hum. Mol. Genet. 15 (11): 1847–1857.

      55 Westfall, J.E., Hoyt, C., Liu, Q. et al. (2010). Retinal degeneration and failure of photoreceptor outer segment formation in mice with targeted deletion of the Joubert syndrome gene, Ahi1. J. Neurosci. 30 (26): 8759–8768.

      56 Won, J., Gifford, E., Smith, R.S. et al. (2009). RPGRIP1 is essential for normal rod photoreceptor outer segment elaboration and morphogenesis. Hum. Mol. Genet. 18 (22): 4329–4339.

      57 Won, J., Marin de Evsikova, C., Smith, R.S. et al. (2011). NPHP4 is necessary for normal photoreceptor ribbon synapse maintenance and outer segment formation, and for sperm development. Hum. Mol. Genet. 20 (3): 482–496.

      58 Zhao, Y., Hong, D.H., Pawlyk, B. et al. (2003). The retinitis pigmentosa GTPase regulator (RPGR)‐interacting protein: subserving RPGR function and participating in disk morphogenesis. Proc. Natl. Acad. Sci. U. S. A. 100 (7): 3965–3970.

      59 Insinna, C. and Besharse, J.C. (2008). Intraflagellar transport and the sensory outer segment of vertebrate photoreceptors. Dev. Dyn. 237 (8): 1982–1992.

      60 Pazour, G.J., Baker, S.A., Deane, J.A. et al. (2002). The intraflagellar transport protein, IFT88, is essential for vertebrate photoreceptor assembly and maintenance. J. Cell Biol. 157 (1): 103–113.

      61 Liu, Q., Lyubarsky, A., Skalet, J.H. et al. (2003). RP1 is required for the correct stacking of outer segment discs. Invest. Ophthalmol. Visual Sci. 44 (10): 4171–4183.

      62 Campione, M. and Franco, D. (2016). Current perspectives in cardiac laterality. J. Cardiovasc. Dev. Dis. 3 (4): 1–18.

      63 Tan, S.Y., Rosenthal, J., Zhao, X.Q. et al. (2007). Heterotaxy and complex structural heart defects in a mutant mouse model of primary ciliary dyskinesia. J. Clin. Invest. 117 (12): 3742–3752.

      64 Bisgrove, B.W., Morelli, S.H., and Yost, H.J. (2003). Genetics of human laterality disorders: insights from vertebrate model systems. Annu. Rev. Genomics Hum. Genet. 4: 1–32.

      65 Bohun, C.M., Potts, J.E., Casey, B.M., and Sandor, G.G. (2007). A population‐based study of cardiac malformations and outcomes associated with dextrocardia. Am. J. Cardiol. 100 (2): 305–309.

      66 Kennedy, M.P., Omran, H., Leigh, M.W. et al. (2007). Congenital heart disease and other heterotaxic defects in a large cohort of patients with primary ciliary dyskinesia. Circulation 115 (22): 2814–2821.

      67 Klena, N.T., Gibbs, B.C., and Lo, C.W. (2017). Cilia and ciliopathies in congenital heart disease. Cold Spring Harbor Perspect. Biol. 9 (8): 1–18.

      68 Yang, J., Andre, P., Ye, L., and Yang, Y.Z. (2015). The Hedgehog signalling pathway in bone formation. Int. J. Oral Sci. 7 (2): 73–79.

      69 Halbritter, J., Bizet, A.A., Schmidts, M. et al. (2013). Defects in the IFT‐B component IFT172 cause Jeune and Mainzer–Saldino syndromes in humans. Am. J. Hum. Genet. 93 (5): 915–925.

      70 Schmidts, M., Frank, V., Eisenberger, T. et al. (2013). Combined NGS approaches identify mutations in the intraflagellar transport gene IFT140 in skeletal ciliopathies with early progressive kidney disease. Hum. Mutat. 34 (5): 714–724.

      71 Zaghloul, N.A. and Brugmann, S.A. (2011). The emerging face of primary cilia. Genesis 49 (4): 231–246.

      72 Schock, E.N. and Brugmann, S.A. (2017). Discovery, diagnosis, and etiology of craniofacial ciliopathies. Cold Spring Harbor Perspect. Biol. 9 (9): 1–14.

      73 Adel Al‐Lami, H., Barrell, W.B., and Liu, K.J. (2016). Micrognathia in mouse models of ciliopathies. Biochem. Soc. Trans. 44 (6): 1753–1759.

      74 Marshall, W.F. (2008). The cell biological basis of ciliary disease. J. Cell Biol. 180 (1): 17–21.

      75 Babbs, C., Furniss, D., Morriss‐Kay, G.M., and Wilkie, A.O. (2008). Polydactyly in the mouse mutant Doublefoot involves altered Gli3 processing and is caused by a large deletion in cis to Indian hedgehog. Mech. Dev. 125 (5–6): 517–526.

      76 Haycraft, C.J., Banizs, B., Aydin‐Son, Y. et al. (2005). Gli2 and Gli3 localize to cilia and require the intraflagellar transport protein polaris for processing and function. PLoS Genet. 1 (4): e53.

      77 Rigueur, D. and Lyons, K.M. (2014). Whole‐mount skeletal staining. Methods Mol. Biol. 1130: 113–121.

      78 Guemez‐Gamboa, A., Coufal, N.G., and Gleeson, J.G. (2014). Primary cilia in the developing and mature brain. Neuron 82 (3): 511–521.

      79 Breunig, J.J., Sarkisian, M.R., Arellano, J.I. et al. (2008). Primary cilia regulate hippocampal neurogenesis by mediating sonic hedgehog signaling. Proc. Natl. Acad. Sci. U. S. A. 105 (35): 13127–13132.

      80 Han, Y.G., Spassky, N., Romaguera‐Ros, M. et al. (2008). Hedgehog signaling and primary cilia are required for the formation of adult neural stem cells. Nat. Neurosci. 11 (3): 277–284.

      81 Spassky, N., Han, Y.G., Aguilar, A. et al. (2008). Primary cilia are required for cerebellar development and Shh‐dependent expansion of progenitor pool. Dev. Biol. 317 (1): 246–259.

      82 Lee, J.E. and Gleeson, J.G. (2011). Cilia in the nervous system: linking cilia function and neurodevelopmental disorders. Curr. Opin. Neurol. 24 (2): 98–105.

      83 Gressens, P. (2006). Pathogenesis of migration disorders. Curr. Opin. Neurol. 19 (2): 135–140.

      84 Louie, C.M. and Gleeson, J.G. (2005). Genetic basis of Joubert syndrome and related disorders of cerebellar development. Hum. Mol. Genet. 14 (2): R235–R242.

      85 Bashford, A.L. and Subramanian, V. (2019). Mice with a conditional deletion of Talpid3 (KIAA0586) – a model for Joubert syndrome. J. Pathol. 248 (4): 396–408.

      86 Jones, C., Roper, V.C., Foucher, I. et al. (2008). Ciliary proteins link basal body polarization to planar cell polarity regulation. Nat. Genet. 40 (1): 69–77.

      87 Imtiaz, A., Belyantseva, I.A., Beirl, A.J. et al. (2018). CDC14A