численности населения мира. Это неправильно поставленный вопрос. Само представление о том, что гиперболический рост населения Земли может быть объяснен с помощью причинного степенного закона квадратичного роста является ошибочным.
Рост популяции, выраженный степенным или каким-либо другим нелинейным законом, не может быть полностью описан лишь с помощью самого этого закона, т. к. такой закон сам по себе не может объяснить информационную связность растущей популяции, взаимозависимость роста всех ее частей.
Кроме того, рост популяции, происходящий по степенному закону, имеет и свои, специфические, присущие только ему особенности, не позволяющие принять этот закон в качестве причинного закона для описания роста какой-либо реально существовавшей в природе популяции. Перечислим все эти аномальные особенности параболического и гиперболического роста:
1. Оба они имеют особую, выделенную на оси времени точку: момент начала или завершения роста, численность популяции в которой равна нулю для параболического и бесконечности для гиперболического роста. Поскольку такое в реальности невозможно, да и само наличие таких особых точек на шкале роста должно иметь какое-то объяснение, следует признать, что непрерывная модель степенного роста как процесса с простой преддетерминацией изначально содержит в себе внутренние противоречия.
2. Хотя численность популяции при степенном, так же как и при экспоненциальном росте изменяется по закону геометрической прогрессии, но рост этот происходит на последовательности интервалов времени расширяющихся (параболический рост) или сжимающихся (гиперболический рост) по закону прогрессии от/к особой точки/е этого роста.
Это увеличение (уменьшение) времени удвоения численности популяции выполняется при отсчете времени (прямом или обратном) только от этой точки и ни от какой другой, что еще раз подчеркивает ее выделенность. Такой рост, в отличие от экспоненциального роста, является существенно неоднородным во времени процессом. Если взять два равных отрезка времени, различающихся своим положением на шкале роста, то рост численности, в том числе и размножение каждой единичной особи популяции, будет происходить на них совершенно по разному.
Рассмотрим, например, простой гиперболический рост на последовательности отрезков времени, сокращающихся по закону прогрессии со знаменателем 1/2 (так росло население Земли). На каждом таком отрезке время удвоения численности уменьшается вдвое по сравнению с предыдущим, что говорит о том, что особи популяции будут здесь более плодовитыми и/или потери от смертности меньшими[93].
Что совершенно немыслимо для любой популяции, когда-либо существовавшей в природе, время удвоения численности которой в благоприятных и неизменных условиях есть всегда величина постоянная. Поскольку это время по каким-то причинам при каждом таком удвоении численности уменьшается ровно в два раза, то это должно иметь какое-то объяснение;