Prof Carla Moreira

The Statistical Analysis of Doubly Truncated Data


Скачать книгу

estimation and improved efficiency for special cases of double truncation. Lifetime Data Analysis 20, 335–354.

      3 Beyersmann J, Allignol A, Schumacher M 2012 Competing Risks and Multistate Models with R . Springer.

      4 Bilker WB, Wang MC 1996 A semiparametric extension of the Mann‐Whitney test for randomly truncated data. Biometrics 52, 10–20.

      5 Clark J, Reddy S, Zheng K, Betensky RA, Simon DK 2011 Association of PGC‐1alphapolymorphisms with age of onset and risk of Parkinson's disease. BMC Medical Genetics 12, 69.

      6 de Uña‐Álvarez J 2020 Nonparametric estimation of the cumulative incidences of competing risks under double truncation. Biometrical Journal 62, 852–867.

      7 Efron B, Petrosian V 1999 Nonparametric methods for doubly truncated data. Journal of the American Statistical Association 94, 824–834.

      8 Kalbfleisch JD, Lawless JF 1989 Inference based on retrospective ascertainment: An analysis of the data on transfusion‐related AIDS. Journal of the American Statistical Association 84, 360–372.

      9 Kaplan EL, Meier P 1958 Nonparametric estimation from incomplete observations. Journal of the American Statistical Association 53, 457–481.

      10 Klein JP, Moeschberger ML 2003 Survival Analysis. Techniques for Censored and Truncated Data (2nd Edition). Springer.

      11 Lynden‐Bell D 1971 A method of allowing for known observational selection in small samples applied to 3CR quasars. Monthly Notices of the Royal Astronomical Society 155, 95–118.

      12 Mandel M, de Uña‐Álvarez J, Simon DK, Betensky RA 2018 Inverse probability weighted Cox regression for doubly truncated data. Biometrics 74, 481–487.

      13 Moreira C, de Uña‐Álvarez J 2010 Bootstrapping the NPMLE for doubly truncated data. Journal of Nonparametric Statistics 22, 567–583.

      14 Moreira C, de Uña‐Álvarez J, Crujeiras RM 2021a DTDA: Doubly Truncated Data Analysis. R package version 3.0.

      15 Moreira C, de Uña‐Álvarez J, Santos AC, Barros H 2021b Smoothing methods to estimate the hazard rate under double truncation. arXiv 2103.14153.

      16 Shen PS 2010 Nonparametric analysis of doubly truncated data. Annals of the Institute of Statistical Mathematics 62, 835–853.

      17 Turnbull BW 1976 The empirical distribution function with arbitrarily grouped, censored and truncated data. Journal of the Royal Statistical Society Series B 38, 290–295.

      18 Wang MC 1991 Nonparametric estimation from cross‐sectional survival data. Journal of the American Statistical Association 86, 130–143.

      19 Woodroofe M 1985 Estimating a distribution function with truncated data. Annals of Statistics 13, 163–177.

      20 Xiao J, Hudgens MG 2019 On nonparametric maximum likelihood estimation with double truncation. Biometrika 106, 989–996.

      21 Ye ZS, Tang LC 2016 Augmenting the unreturned for field data with information on returned failures only. Technometrics 58, 513–523.

      22 Zhu H, Wang MC 2012 Analysing bivariate survival data with interval sampling and application to cancer epidemiology. Biometrika 99, 345–361.

      Конец ознакомительного фрагмента.

      Текст предоставлен ООО «ЛитРес».

      Прочитайте эту книгу целиком, купив полную легальную версию на ЛитРес.

      Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.

/9j/4AAQSkZJRgABAQEBLAEsAAD/7RvQUGhvdG9zaG9wIDMuMAA4QklNBAQAAAAAAAccAgAAAgAA ADhCSU0EJQAAAAAAEOjxXPMvwRihontnrcVk1bo4QklNBDoAAAAAAPcAAAAQAAAAAQAAAAAAC3By aW50T3V0cHV0AAAABQAAAABQc3RTYm9vbAEAAAAASW50ZWVudW0AAAAASW50ZQAAAABDbHJtAAAA D3ByaW50U2l4dGVlbkJpdGJvb2wAAAAAC3ByaW50ZXJOYW1lVEVYVAAAAAoAQQBkAG8AYgBlACAA UABEAEYAAAAAAA9wcmludFByb29mU2V0dXBPYmpjAAAADABQAHIAbwBvAGYAIABTAGUAdAB1AHAA AAAAAApwcm9vZlNldHVwAAAAAQAAAABCbHRuZW51bQAAAAxidWlsdGluUHJvb2YAAAAJcHJvb2ZD TVlLADhCSU0EOwAAAAACLQAAABAAAAABAAAAAAAScHJpbnRPdXRwdXRPcHRpb25zAAAAFwAAAABD cHRuYm9vbAAAAAAAQ2xicmJvb2wAAAAAAFJnc01ib29sAAAAAABDcm5DYm9vbAAAAAAAQ250Q2Jv b2wAAAAAAExibHNib29sAAAAAABOZ3R2Ym9vbAAAAAAARW1sRGJvb2wAAAAAAEludHJib29sAAAA AABCY2tnT2JqYwAAAAEAAAAAAABSR0JDAAAAAwAAAABSZCAgZG91YkBv4AAAAAAAAAAAAEdybiBk b3ViQG/gAAAAAAAAAAAAQmwgIGRvdWJAb+AAAAAAAAAAAABCcmRUVW50RiNSbHQAAAAAAAAAAAAA