Группа авторов

Genetic Analysis of Complex Disease


Скачать книгу

J.M. (1981). Genetic disease in the offspring of older fathers. Obstet. Gynecol. 57 (6): 745–749.

      8  Garrod, A.E. (1902). The incidence of alkaptonuria: a study in chemical individuality. Lancet ii: 1616–1620.

      9 Hamosh, A., Fitz‐Simmons, S.C., Macek, M. et al. (1998). Comparison of the clinical manifestations of cystic fibrosis in black and white patients. J. Pediatr. 132: 255–259.

      10 Hardy, G.H. (1908). Mendelian proportions in a mixed population. Science 28: 41–50.

      11 Hoogerwaard, E., van der Wouw, P., Wilde, A. et al. (1999). Cardiac involvement in carriers of Duchenne and Becker muscular dystrophy. Neuromuscul. Disord. 9: 347–351.

      12 Jorde, L.B., Carey, J.C., and White, R.L. (eds.) (1995). Medical Genetics. St. Louis, MO: C. W. Mosby.

      13 Koenig, M., Monaco, A.P., and Kunkel, L.M. (1988). The complete sequence of dystrophin predicts a rod‐shaped cytoskeletal protein. Cell 53: 219–228.

      14 La Spada, A. and Taylor, J. (2010). Repeat expansion disease: progress and puzzles in disease pathogenesis. Nat. Rev. Genet. 11: 247–258.

      15 Penrose, L.S. (1955). Parental age and mutation. Lancet ii: 312–313.

      16 Pericak‐Vance, M.A. and Haines, J.L. (1995). Genetic susceptilbility to Alzheimer disease. Trends Genet. 11: 504–508.

      17 Polak, U., McIvor, E., Dent, S.Y. et al. (2013). Expanded complexity of unstable repeat diseases. Biofactors 39 (2): 164–175.

      18 Ratjen, F. and Doring, G. (2003). Cystic fibrosis. Lancet 361 (9358): 681–689.

      19 Rousseau, F., Bonaventure, J., Legeai‐Mallet, L. et al. (1994). Mutations in the gene encoding fibroblast growth factor receptor‐3 in achondroplasia. Nature 371: 252–254.

      20 Saunders, A.M., Strittmatter, W.J., Schmechel, D. et al. (1993). Association of apolipoprotein E allele epsilon 4 with late‐onset familial and sporadic Alzheimer’s disease. Neurology 43: 1467–1472.

      21 Shiang, R., Thompson, L.M., Zhu, Y.‐Z. et al. (1994). Mutations in the transmembrane domain of FGFR3 cause the most common genetic form of dwarfism, achondroplasia. Cell 78: 335–342.

      22 Stankiewicz, P. and Lupski, J. (2010). Structural variation in the human genome and its role in disease. Annu. Rev. Med. 61: 437–455.

      23 Stoll C, Roth M‐P, Bigel P (1982): A reexamination of parental age effect on the occurrence of new mutations for achondroplasia. Prog. Clin. Biol. Res., 104:419–426.

      24 Strachan, T. and Read, A.P. (1996). Human Molecular Genetics, 1ste. New York: Wiley.

      25 Takeshima, Y., Yagi, M., Okizuka, Y. et al. (2010). Mutation spectrum of the dystrophin gene in 442 Duchenne/Becker muscular dystrophy cases from one Japanese referral center. J. Hum. Genet. 55: 379–388.

      26 Thompson, M.W., McInnes, R.R., Willard, H.F., and Thompson, J.S. (eds.) (1991). Genetics in Medicine, 5the. Philadelphia, PA: W. B. Saunders Company.

      27 Tjio, J.H. and Levan, A. (1956). The chromosome number of man. Hereditas 42: 1–6.

      28 Turner, G., Webb, T., Wake, S., and Robinson, H. (1996). Prevalence of fragile X syndrome. Am. J. Med. Genet. 64 (1): 196.

      29 Watson, J.D. (1968). The Double Helix. New York: Atheneum.

      30 Watson, J.D. and Crick, F.H.C. (1953). A structure for deoxyribose nucleic acid. Nature 171: 737–738.

      31 Weinberg, W. (1908). Uber den nachweis der vererbung beim Menschen. Jahreshefte des vereins fur vaterlandische naturkunde in wurttemberg. Wurttemberg 64: 368–382.

      32 Zarrei, M., MacDonald, J.R., Merico, D., and Scherer, S.W. (2015). A copy number variation map of the human genome. Nat. Rev. Genet. 16 (3): 172–183.

       Allison Ashley Koch1 and Evadnie Rampersaud2

       1 Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, USA

       2 Center for Applied Bioinformatics, St. Jude Children’s Research Hospital, Memphis, TN, USA

      Genetics is believed to contribute to the etiology of almost every human trait and condition. Even for infectious diseases that have been traditionally described as environmental, such as tuberculosis and HIV, genetic factors have been implicated either in the susceptibility to infection or in the severity of the condition (Bellamy 1998; Hill 1999; Bellamy et al. 2000; Gonzalez et al. 2001; Shields and Dell 2001). Understanding the role of genetics in disease etiology can allow development of successful therapies that improve the quality of life for affected individuals and their families. However, before embarking on expensive and labor‐intensive studies to identify the genetic factors involved in a particular condition, one should evaluate the evidence that genes contribute to that trait or condition.

      However, even in the presence of such complexities, there are methods available to evaluate whether or not genetics plays an important role in the disease etiology. Those methods are the primary topic of this chapter and should be explored prior to embarking on more elaborate analyses such as genome‐wide association analyses or linkage analyses. Importantly, before considering any analysis,