механических функций. Такие исследователи, как Джон Маккарти и Марвин Мински, исследовали проблемы универсальных вычислений, общего искусственного интеллекта, рассуждений и памяти.
В 1973 году Кристофер Шабрис и Дэниел Саймонс предложили мысленный эксперимент под названием «Несовместимость ИИ и человеческого интеллекта». Описанная проблема заключалась в том, что, если искусственная система была настолько умной, что превосходила человека или превосходила человеческие способности, эта система могла принимать любые решения, какие захотела. Это может нарушить фундаментальное человеческое предположение о том, что люди должны иметь право делать свой собственный выбор.
В конце 1970-х – начале 1980-х сфера деятельности сменилась с классической ориентации на компьютеры на создание искусственных нейронных сетей. Исследователи начали искать способы научить компьютеры учиться, а не просто выполнять определенные задачи. Эта область быстро развивалась в течение 1970-х годов и в конечном итоге перешла от вычислительной к более научно ориентированной, а ее область применения расширилась от вычислений до человеческого восприятия и действий.
Многие исследователи 1970-х и 1980-х годов сосредоточились на определении границ человеческого и компьютерного интеллекта или возможностей, необходимых для искусственного интеллекта. Граница должна быть достаточно широкой, чтобы охватить весь спектр человеческих способностей.
В то время как человеческий мозг способен обрабатывать данные в гигабайтах, ведущим исследователям было сложно представить, как искусственный мозг может обрабатывать гораздо большие объемы данных. В то время компьютер был примитивным устройством и мог обрабатывать только однозначные проценты данных в человеческом масштабе.
В ту эпоху ученые, занимающиеся искусственным интеллектом, также начали работу над алгоритмами, чтобы научить компьютеры учиться на собственном опыте – концепция, аналогичная тому, как учится человеческий мозг. Между тем, параллельно, большое количество ученых-информатиков разработало методы поиска, которые могли решать сложные проблемы путем поиска огромного количества возможных решений.
Сегодня исследования искусственного интеллекта по-прежнему сосредоточены на автоматизации определенных задач. Такой упор на автоматизацию когнитивных задач получил название «узкий ИИ». Многие исследователи, работающие в этой области, работают над распознаванием лиц, переводом языков, игрой в шахматы, сочинением музыки, вождением автомобилей, компьютерными играми и анализом медицинских изображений. Ожидается, что в течение следующего десятилетия узкий ИИ разовьет более специализированные и развитые приложения, включая компьютерную систему, которая сможет обнаруживать ранние стадии болезни Альцгеймера и анализировать раковые образования.
В 2010-х годах возникнет сообщество машинного