Lederle, F.A., Johnson, G.R., Wilson, S.E. et al. (2000). The aneurysm detection and management study screening program: validation cohort and final results. Aneurysm Detection and Management Veterans Affairs Cooperative Study Investigators. Arch. Intern. Med. 160: 1425–1430.
34 34 Lederle, F.A., Nelson, D.B., and Joseph, A.M. (2003). Smokers' relative risk for aortic aneurysm compared with other smoking‐related diseases: a systematic review. J. Vasc. Surg. 38: 329–334.
35 35 Jahangir, E., Lipworth, L., Edwards, T.L. et al. (2015). Smoking, sex, risk factors and abdominal aortic aneurysms: a prospective study of 18 782 persons aged above 65 years in the Southern Community Cohort Study. J. Epidemiol. Community Health 69 (5): 481–488.
36 36 Darling, R.C., Messina, C.R., Brewster, D.C., and Ottinger, L.W. (1977). Autopsy study of unoperated abdominal aortic aneurysms. The case for early resection. Circulation 56 (Suppl. 3): 161–164.
37 37 Stringfellow, M.M., Lawrence, P.F., and Stringfellow, R.G. (1987). The influence of aorta‐aneurysm geometry upon stress in the aneurysm wall. J. Surg. Res. 42: 425–433.
38 38 Vorp, D.A., Raghavan, M.L., and Webster, M. (1998). Mechanical wall stress in abdominal aortic aneurysm: inuence of diameter and asymmetry. J. Vasc. Surg. 27: 632–639.
39 39 Raghavan, M.L. and Vorp, D.A. (2000). Toward a biomechanical tool to evaluate rupture potential of abdominal aortic aneurysm: identification of a finite strain constitutive model and evaluation of its applicability. J. Biomech. 33 (4): 475–482.
40 40 Raghavan, M.L., Kratzberg, J., Castro de Tolosa, E.M. et al. (2006). Regional distribution of wall thickness and failure properties of human abdominal aortic aneurysm. J. Biomech. 39: 3010–3016.
41 41 Raghavan, M.L., Vorp, D.A., Federle, M.P. et al. (2000). Wall stress distribution on three‐dimensionally reconstructed models of human abdominal aortic aneurysm. J. Vasc. Surg. 31: 760–769.
42 42 Vande Geest, J.P., Sacks, M.S., and Vorp, D.A. (2006). A planar biaxial constitutive relation for the luminal layer of intra‐luminal thrombus in abdominal aortic aneurysms. J. Biomech. 39: 2347–2354.
43 43 Scotti, C.M., Jimenez, J., Muluk, S.C., and Finol, E.A. (2008). Wall stress and flow dynamics in abdominal aortic aneurysms: finite element analysis vs. fluid–structure interaction. Comput. Methods Biomech. Biomed. Eng. 11 (3): 301–322.
44 44 Scotti, C.M., Shkolnik, A.D., Muluk, S., and Finol, E.A. (2005). Fluid–structure interaction in abdominal aortic aneurysms: effects of asymmetry and wall thickness. Biomed. Eng. Online 4 (4): 64.
45 45 Finol, E.A. and Amon, C.H. (2001). Blood flow in abdominal aortic aneurysms: pulsatile flow hemodynamics. J. Biomech. Eng. 123: 474–484.
46 46 Finol, E.A. and Amon, C.H. (2002). Flow‐induced wall shear stress in abdominal aortic aneurysms: part I – steady flow hemodynamics. Comput. Methods Biomech. Biomed. Eng. 5 (4): 309–318.
47 47 Federico, S. and Gasser, T.C. (2010). Nonlinear elasticity of biological tissues with statistical fiber orientation. J. R. Soc. Interf. 7 (47): 955–966.
48 48 Hardin, R.H. and Sloane, N.J.A. (1996). McLaren's improved snub cube and other new spherical designs in three dimentions. Discret. Comput. Geom. 15: 429–441.
49 49 Zhang, Y., Barocas, V.H., Berceli, S.A. et al. (2016). Multi‐scale modeling of the cardiovascular system: disease development, progression, and clinical intervention. Ann. Biomed. Eng. 44 (9): 2642–2660.
50 50 Guidoboni, G., Glowinski, R., Cavallini, N. et al. (2009). A kinematically coupled time‐splitting scheme for fluid–structure interaction in blood flow. Appl. Math. Lett. 22 (5): 684–688.
51 51 Guidoboni, G., Glowinski, R., Cavallini, N., and Čanić, S. (2009). Stable loosely‐coupled‐type algorithm for fluid–structure interaction in blood flow. J. Comput. Phys. 228 (18): 6916–6937.
52 52 Bukač, M., Čanić, S., Glowinski, R. et al. (2013). Fluid–structure interaction in blood flow capturing non‐zero longitudinal structure displacement. J. Comput. Phys. 235: 515–541.
53 53 Quarteroni, A. and Formaggia, L. (2004). Mathematical modelling and numerical simulation of the cardiovascular system in modelling of living systems. In: 12 of Handbook of Numerical Analysis, 3–127. Amsterdam: North‐Holland.
54 54 Formaggia, L., Gerbeau, J.F., Nobile, F., and Quarteroni, A. (2001). On the coupling of 3D and 1D Navier–Stokes equations for flow problems in compliant vessels. Comput. Methods Appl. Mech. Eng. 191 (6–7): 561–582.
55 55 Formaggia, L., Lamponi, D., and Quarteroni, A. One‐dimensional models for blood flow in arteries. J. Eng. Math. 47 (3–4): 251–276.
56 56 Nobile, F. and Vergara, C. (2008). An effective fluid–structure interaction formulation for vascular dynamics by generalized Robin conditions. SIAM J. Sci. Comput. 30 (2): 731–763.
57 57 Causin, P., Gerbeau, J.F., and Nobile, F. (2005). Added‐mass effect in the design of partitioned algorithms for fluid–structure problems. Comput. Methods Appl. Mech. Eng. 194 (42–44): 4506–4527.
58 58 Čanić, S., Mikelić, A., and Tambača, J. (2005). A two‐dimensional effective model describing fluid–structure interaction in blood flow: analysis, simulation and experimental validation. Comptes Rendus. 333 (12): 867–883.
59 59 Čanić, S., Tambača, J., Guidoboni, G. et al. (2006). Modeling viscoelastic behavior of arterial walls and their interaction with pulsatile blood flow. SIAM J. Appl. Math. 67 (1): 164–193.
60 60 Čanić, S., Hartley, C.J., Rosenstrauch, D. et al. (2006). Blood flow in compliant arteries: an effective viscoelastic reduced model, numerics, and experimental validation. Ann. Biomed. Eng. 34 (4): 575–575.
61 61 Heil, A., Hazel, L., and Boyle, J. (2008). Solvers for large‐displacement fluid–structure interaction problems: segregated versus monolithic approaches. Comput. Mech. 43 (1): 91–101.
62 62 MacSweeney, S.T.R., Powell, J.T., and Greenhalgh, R.M. (1994). Pathogenesis of abdominal aortic aneurysm. Br. J. Surg. 81: 935–941.
63 63 van't Veer, M., Buth, J., Merkx, M. et al. (2008). Biomechanical properties of abdominal aortic aneurysms assessed by simultaneously measured pressure and volume changes in humans. J. Vasc. Surg. 48 (6): 1401–1407.
64 64 Ganten, M.K., Krautter, U., von Tengg‐Kobligk, H. et al. (2008). Quantification of aortic distensibility in abdominal aortic aneurysm using ecg‐gated multi‐detector computed tomography. Vasc. Intervent. 18 (5): 966–973.
65 65 Molacek, J., Baxa, J., Houdek, K. et al. (2011). Assessment of abdominal aortic aneurysm wall distensibility with electrocardiography‐gated computed tomography. Ann. Vasc. Surg. 25 (8): 1036–1042.
66 66 Di Puccio, F., Celi, S., and Forte, P. (2012). Review of experimental investigations on compressibility of arteries and the introduction of a new apparatus. Exp. Mech. 52 (7): 1–8. https://doi.org/10.1007/s11340‐012‐9614‐4.
67 67 Humphrey, J.D. and Yin, F.C. (1987). A new constitutive formulation for characterizing the mechanical behavior of soft tissues. Biophys. J. 52 (4): 563–570.
68 68 Ogden, R.W. (2009). Anisotropy and nonlinear elasticity in arterial wall mechanics. In: Biomechanical Modelling at the Molecular, Cellular and Tissue Levels. CISM Courses and Lectures, vol. 508 (eds. G.A. Holzapfel, R.W. Ogden, F. Pfeiffer, et al.), 179–258. Vienna: Springer.
69 69 Vande Geest, J.P., Sacks, M.S., and Vorp, D.A. (2004). Age dependency of the biaxial biomechanical behavior of human abdominal aorta. J. Biomech. Eng. 12: 815–822.
70 70 Vande Geest, J.P., Sacks, M.S., and Vorp, D.A. (2006). The effects of aneurysm on the biaxial mechanical behavior of human abdominal aorta. J. Biomech. 39: 1324–1334.
71 71 Koncar, I., Nikolic, D., Pantovic, S. et al. (2013). Modeling of abdominal aortic aneurysm rupture by using bubble inflation test. Bioinform. Bioeng. (BIBE) https://doi.org/10.1109/BIBE.2013.6701612.
72 72