potential bioactive substances for cosmeceutical applications. Critical Reviews in Biotechnology: 1–15.
85 85 Wang, H.‐M., Chou, Y.‐T., Wen, Z.‐H. et al. (2013). Novel biodegradable porous scaffold applied to skin regeneration. PLoS One 8 (6): e56330.
86 86 Wang, J., Jin, W., Hou, Y. et al. (2013). Chemical composition and moisture‐absorption/retention ability of polysaccharides extracted from five algae. International Journal of Biological Macromolecules 57: 26–29.
87 87 Fabrowska, J., Łęska, B., Schroeder, G., Messyasz, B., & Pikosz, M. (2015). Biomass and extracts of algae as material for cosmetics. In Marine Algae Extracts (eds S.‐K. Kim and K. Chojnacka) (pp. 681–706). Wiley. https://doi.org/10.1002/9783527679577.ch38
88 88 Pereira, L. (2018). Seaweeds as source of bioactive substances and skin care therapy – cosmeceuticals, algotheraphy, and thalassotherapy. Cosmetics 5 (4): 68. https://doi.org/10.3390/cosmetics5040068.
89 89 Qin, Y. (2018). 1 – seaweed bioresources. In: Bioactive Seaweeds for Food Applications (ed. Y. Qin), 3–24. Academic Press.
90 90 Wijesekara, I., Pangestuti, R., and Kim, S.‐K. (2011). Biological activities and potential health benefits of sulfated polysaccharides derived from marine algae. Carbohydrate Polymers 84 (1): 14–21.
91 91 El Gamal, A.A. (2010). Biological importance of marine algae. Saudi Pharmaceutical Journal 18 (1): 1–25.
92 92 Kim, J.H., Lee, J.‐E., Kim, K.H., and Kang, N.J. (2018). Beneficial effects of marine algae‐derived carbohydrates for skin health. Marine Drugs 16 (11).
93 93 Pallela, R., Na‐Young, Y., and Kim, S.‐K. (2010). Anti‐photoaging and photoprotective compounds derived from marine organisms. Marine Drugs 8 (4): 1189–1202.
94 94 Teas, J. and Irhimeh, M.R. (2017). Melanoma and brown seaweed: an integrative hypothesis. Journal of Applied Phycology 29 (2): 941–948.
95 95 Song, Y.S., Li, H., Balcos, M.C. et al. (2014). Fucoidan promotes the reconstruction of skin equivalents. The Korean Journal of Physiology & Pharmacology: Official Journal of the Korean Physiological Society and the Korean Society of Pharmacology 18 (4): 327–331.
96 96 Fitton, J.H., Dell’Acqua, G., Gardiner, V.‐A. et al. (2015). Topical benefits of two fucoidan‐rich extracts from marine macroalgae. Cosmetics 2 (2): 66–81.
97 97 Li, Y.‐J., Han, Z., Ge, L. et al. (2016). C‐phycocyanin protects against low fertility by inhibiting reactive oxygen species in ageing mice. Oncotarget 7 (14): 17393–17409.
98 98 Barg, H. (2013). Filler composition comprising beta‐glucans (United States Patent No. US20130196944A1). https://patents.google.com/patent/US20130196944A1/en
99 99 Yvin, J.‐C., Levasseur, F., and Hud’Homme, F. (1999). Use of laminarin and oligosaccharides derived therefrom in cosmetics and for preparing a skin treatment drug
100 100 Saito, M. (2005). Porphyran‐containing cosmetic (Patent No. JP2005336148A). https://patents.google.com/patent/JP2005336148A/en
101 101 Cheong, K.‐L., Qiu, H.‐M., Du, H. et al. (2018). Oligosaccharides derived from red seaweed: production, properties, and potential health and cosmetic applications. Molecules 23 (10): 2451.
102 102 Laurent, L., & Bebot, C. (2018). Cosmetic composition comprising at least one lambda‐carrageenan polysaccharide in combination with at least one specific polyol, and process for the cosmetic treatment of keratin fibers with the composition, and use of the composition for hair care (United States Patent No. US20180296458A1).
103 103 Pangestuti, R. and Kim, S.‐K. (2011). Biological activities and health benefit effects of natural pigments derived from marine algae. Journal of Functional Foods 3 (4): 255–266.
104 104 Kidgell, J.T., Magnusson, M., de Nys, R., and Glasson, C.R.K. (2019). Ulvan: a systematic review of extraction, composition and function. Algal Research 39: 101422.
105 105 Ray, B. and Lahaye, M. (1995). Cell‐wall polysaccharides from the marine green alga Ulva “rigida” (ulvales, Chlorophyta). Extraction and chemical composition. Carbohydrate Research 274: 251–261.
106 106 Gong, M. and Bassi, A. (2016). Carotenoids from microalgae: a review of recent developments. Biotechnology Advances 34 (8): 1396–1412.
107 107 Novoveská, L., Ross, M.E., Stanley, M.S. et al. (2019). Microalgal carotenoids: a review of production, current markets, regulations, and future direction. Marine Drugs 17 (11).
108 108 Fitzpatrick, J.E., High, W.A., and Kyle, W.L. (2018). Discolorations of the skin. In: Urgent Care Dermatology: Symptom‐Based Diagnosis (pp. 441–460) (eds. J.E. Fitzpatrick, W.A. High and W.L. Kyle). Elsevier.
109 109 Sharif, H.R., Goff, H.D., Majeed, H. et al. (2017). Physicochemical stability of β‐carotene and α‐tocopherol enriched nanoemulsions: Influence of carrier oil, emulsifier and antioxidant. Colloids and Surfaces A: Physicochemical and Engineering Aspects 529: 550–559.
110 110 Polyakov, N.E., Leshina, T.V., Konovalova, T.A., and Kispert, L.D. (2001). Carotenoids as scavengers of free radicals in a Fenton reaction: Antioxidants or pro‐oxidants? Free Radical Biology & Medicine 31 (3): 398–404.
111 111 Çelik, S.E., Bekdeser, B., Tufan, A.N., and Apak, R. (2017). Modified radical scavenging and antioxidant activity measurement of β‐Carotene with β‐Cyclodextrins complexation in aqueous medium. Analytical Sciences 33 (3): 299–305.
112 112 Solymosi, K. and Mysliwa‐Kurdziel, B. (2017). Chlorophylls and their derivatives used in food industry and medicine. Mini Reviews in Medicinal Chemistry 17 (13): 1194–1222.
113 113 Busch, T., Cengel, K.A., and Finlay, J. (2009). Pheophorbide a as a photosensitizer in photodynamic therapy: in vivo considerations. Cancer Biology & Therapy 8 (6): 540–542.
114 114 Xodo, L.E., Rapozzi, V., Zacchigna, M. et al. (2012). The chlorophyll catabolite pheophorbide as a photosensitizer for photodynamic therapy. Current Medicinal Chemistry 19 (6): 799–807.
115 115 Pangestuti, R., Siahaan, E.A., and Kim, S.‐K. (2018). Photoprotective substances derived from marine algae. Marine Drugs 16 (11) https://doi.org/10.3390/md16110399.
116 116 Peng, J., Yuan, J.‐P., Wu, C.‐F., and Wang, J.‐H. (2011). Fucoxanthin, a marine carotenoid present in brown seaweeds and diatoms: metabolism and bioactivities relevant to human health. Marine Drugs 9 (10): 1806–1828.
117 117 Shimoda, H., Tanaka, J., Shan, S.‐J., and Maoka, T. (2010). The anti‐pigmentary activity of fucoxanthin and its influence on skin mRNA expression of melanogenic molecules. The Journal of Pharmacy and Pharmacology 62 (9): 1137–1145.
118 118 Bermejo Román, R., Alvárez‐Pez, J.M., Acién Fernández, F.G., and Molina Grima, E. (2002). Recovery of pure B‐phycoerythrin from the microalga Porphyridium cruentum. Journal of Biotechnology 93 (1): 73–85.
119 119 Romay, C. and Gonzalez, R. (2000). Phycocyanin is an antioxidant protector of human erythrocytes against lysis by peroxyl radicals. Journal of Pharmacy and Pharmacology 52 (4): 367–368.
120 120 Singh, N.K., Sonani, R.R., Awasthi, A. et al. (2016). Phycocyanin moderates ageing and proteotoxicity in Caenorhabditis elegans. Journal of Applied Phycology 28 (4): 2407–2417.
121 121 Kim, K.M., Lee, J.Y., I'm, A.‐R., and Chae, S. (2018). Phycocyanin protects against UVB‐induced apoptosis through the PKC α/βII‐Nrf‐2/HO‐1 dependent pathway in human primary skin cells. Molecules 23 (2): 478.
122 122 Bedoux, G., Hardouin, K., Burlot, A.S., and Bourgougnon, N. (2014). Bioactive components from seaweeds: cosmetic applications and future development. In: Advances in Botanical Research, vol. 71 (ed. N. Bourgougnon),