Группа авторов

Electromagnetic Vortices


Скачать книгу

Using the integral identity [21, eq. (7.421‐4)]

      (1.A.16)integral Subscript 0 Superscript infinity Baseline x Superscript nu plus 1 Baseline e Superscript minus beta x squared Baseline upper L Subscript n Superscript nu Baseline left-parenthesis italic a x squared right-parenthesis upper J Subscript nu Baseline left-parenthesis italic x y right-parenthesis equals 2 Superscript negative nu minus 1 Baseline beta Superscript negative nu minus n minus 1 Baseline left-parenthesis beta minus a right-parenthesis Superscript n Baseline y Superscript nu Baseline e Superscript minus StartFraction y squared Over 4 beta EndFraction Baseline upper L Subscript n Superscript nu Baseline left-bracket StartFraction italic a y squared Over 4 beta left-parenthesis a minus beta right-parenthesis EndFraction right-bracket comma

      we find I from Eq. (1.A.8) and the far‐field expression from Eq. (1.A.9):

      (1.A.17)StartLayout 1st Row ModifyingAbove upper E With right-arrow Subscript italic f f Superscript italic upper L upper G Baseline left-parenthesis r comma theta comma phi right-parenthesis equals StartFraction italic j k 0 upper E 0 Superscript italic upper L upper G Baseline e Superscript minus italic j k 0 r Baseline Over 4 italic pi r EndFraction left-parenthesis ModifyingAbove theta With ampersand c period circ semicolon cosine phi minus ModifyingAbove phi With ampersand c period circ semicolon cosine theta sine phi right-parenthesis w Subscript g Baseline left-parenthesis negative 1 right-parenthesis Superscript p Baseline left-parenthesis negative j right-parenthesis Superscript l Baseline 2nd Row times StartRoot StartFraction 2 italic pi p factorial Over left-parenthesis p plus bar l bar right-parenthesis factorial EndFraction EndRoot left-parenthesis StartFraction sgn left-parenthesis l right-parenthesis normal upper Psi Over StartRoot 2 EndRoot EndFraction right-parenthesis Superscript bar l bar Baseline e Superscript minus StartFraction normal upper Psi squared Over 4 EndFraction Baseline upper L Subscript p Superscript bar l bar Baseline left-parenthesis StartFraction normal upper Psi squared Over 2 EndFraction right-parenthesis e Superscript negative italic j l phi Baseline comma EndLayout

      where Ψ = k0wg sin θ. For the definition of wg refer to the first paragraph of the appendix and Figure 1.A.1. The previous discussion refers to the far‐field where the radiation integral can be found in closed form. The near‐field calculation using the Fresnel–Kirchhoff diffraction integral [24] was carried out numerically in Section 1.2 and the results are shown in Figure 1.7.

      1 1 Poynting, J.H. (1909). The wave motion of a revolving shaft, and a suggestion as to the angular momentum in a beam of circularly polarised light. Proceedings of the Royal Society of London 82 (557): 560–567.

      2 2 Beth, R.A. (1936). Mechanical detection and measurement of the angular momentum of light. Physical Review 50: 115–125.

      3 3 Allen, L., Beijersbergen, M.W., Spreeuw, R., and Woerdman, J. (1992). Orbital angular momentum of light and the transformation of Laguerre‐Gaussian laser modes. Physical Review A 45 (11): 8185.

      4 4 Drysdale, T.D., Allen, B., Stevens, C. et al. (2018). How orbital angular momentum modes are boosting the performance of radio links. IET Microwaves, Antennas & Propagation 12 (10): 1625–1632.

      5 5 Veysi, M., Guclu, C., Capolino, F., and Rahmat‐Samii, Y. (2018). Revisiting orbital angular momentum beams: Fundamentals, reflectarray generation, and novel antenna applications. IEEE Antennas and Propagation Magazine 60 (2): 68–81.

      6 6 Cheng, W., Zhang, W., Jing, H. et al. (2019). Orbital angular momentum for wireless communications. IEEE Wireless Communications 26 (1): 100–107.

      7 7 Gori, F., Guattari, G., and Padovani, C. (1987). Bessel‐Gauss beams. Optics Communications 64 (6): 491–495.

      8 8 Karimi, E., Zito, G., Piccirillo, B. et al. (2007). Hypergeometric‐Gaussian modes. Optics Letters 32 (21): 3053–3055.

      9 9 Maurer, C., Jesacher, A., Fürhapter, S. et al. (2007). Tailoring of arbitrary optical vector beams. New Journal of Physics 9 (3): 78.

      10 10 Allen, L., Padgett, M., and Babiker IV, M. (1999). The orbital angular momentum of light, Progress in Optics. Elsevier 39: 291–372.

      11 11 Willner, A.E., Huang, H., Yan, Y. et al. (2015). Optical communications using orbital angular momentum beams. Advances in Optics and Photonics 7 (1): 66–106.

      12 12 Padgett, M.J., Miatto, F.M., Lavery, M.P. et al. (2015). Divergence of an orbital‐angular‐momentum‐carrying beam upon propagation. New Journal of Physics 17 (2): 023011.

      13 13 Beijersbergen, M., Coerwinkel, R., Kristensen, M., and Woerdman, J. (1994). Helical‐wavefront laser beams produced with a spiral phaseplate. Optics Communications 112 (5‐6): 321–327.

      14 14 Trichili, A., Rosales‐Guzmán, C., Dudley, A. et al. (2016). Optical communication beyond orbital angular momentum. Scientific Reports 6: 27674.

      15 15 Oldoni, M., Spinello, F., Mari, E. et al. (2015). Space‐division demultiplexing in orbital‐angular‐momentum‐based mimo radio systems. IEEE Transactions on Antennas and Propagation 63 (10): 4582–4587.

      16 16 Djordjevic, I.B. (2011). Deep‐space and near‐earth optical communications by coded orbital angular momentum (OAM) modulation. Optics Express 19 (15): 14277–14289.

      17 17 Gibson, G., Courtial, J., Padgett, M.J. et al. (2004). Free‐space information transfer using light beams carrying orbital angular momentum. Optics Express 12 (22): 5448–5456.

      18 18 Ge, X., Zi, R., Xiong, X. et al. (2017). Millimeter wave communications with OAM‐SM scheme for future mobile networks. IEEE Journal on Selected Areas in Communications 35 (9): 2163–2177.

      19 19 Turnbull, G., Robertson, D., Smith, G. et al. (1996). The generation of free‐space Laguerre‐Gaussian modes at millimetre‐wave frequencies by use of a spiral phaseplate. Optics Communications 127 (4‐6): 183–188.

      20 20 Yao, A.M. and Padgett, M.J. (2011). Orbital angular momentum: origins, behavior and applications. Advances in Optics and Photonics 3 (2): 161–204.

      21 21 Gradshteyn, I.S. and Ryzhik, I.M. (2014). Table of Integrals, Series, and Products, 7e. Academic press.

      22 22 Rahmat‐Samii, Y. (1988). Reflector antennas. In: Antenna Handbook: Theory, Applications, and Design (eds. S.W. Lee and Y.T. Lo), 949–1072. Boston, MA: Springer US.

      23 23 Tamburini, F., Mari, E., Sponselli, A. et al. (2012). Encoding many channels on the same frequency through radio vorticity: first experimental test. New Journal of Physics 14 (3): 033001.

      24 24 Born, M. and Wolf, E. (2013). Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 6e. Elsevier.

      25 25 Balanis, C.A. (2016). Antenna Theory: Analysis and Design, 4e. John Wiley & Sons.

      26 26 Friis, H.T. (1946). A note on a simple transmission formula. Proceedings of the IRE 34 (5): 254–256.

      27 27 Cho, Y.H. and Byun, W.J. (2019). Generalized friis transmission equation for orbital angular momentum radios. IEEE Transactions on Antennas and Propagation 67 (4): 2423–2429.

      28 28 Nguyen, D.K., Pascal, O., Sokoloff, J. et al. (2015). Antenna gain and link budget for waves carrying orbital angular momentum. Radio Science 50 (11): 1165–1175.

      29 29 D. K. Nguyen, O. Pascal, J. Sokoloff, et al. (2014). Discussion about the link budget for electromagnetic wave with orbital angular momentum, The 8th European Conference on Antennas and Propagation (EuCAP 2014). IEEE, pp. 1117–1121.

      30 30