Владимир Петров

Инновации. Бизнес. ТРИЗ. Теория решения изобретательских задач


Скачать книгу

Петров. [б. м.]: Издательские решения, 2018. – 894 с. – ISBN 978-5-4490-9985-3

      Петров Владимир. Законы и закономерности развития систем. Книга 1. / Владимир Петров. [б. м.]: Издательские решения, 2020. – 248 с. – ISBN 978-5-0051-5727-0 (т.1), ISBN 978-5-0051-5728-7

      Петров Владимир. Законы и закономерности развития систем. Книга 2. / Владимир Петров. [б. м.]: Издательские решения, 2020. – 150с. – ISBN 978—5 – 0051-6003-4 (т.2), ISBN 978-5-0051-5728-7

      Петров Владимир. Законы и закономерности развития систем. Книга 3. / Владимир Петров. [б. м.]: Издательские решения, 2020. – 310 с. – ISBN 978—5 – 0051-6086-7 (т.3), ISBN 978-5-0051-5728-7

      Петров Владимир. Законы и закономерности развития систем. Книга 4. / Владимир Петров. [б. м.]: Издательские решения, 2020. – 350 с. – ISBN 978—5 – 0051-6373-8 (т.4), ISBN 978-5-0051-5728-7

/9j/4AAQSkZJRgABAQIAJgAmAAD/4gxYSUNDX1BST0ZJTEUAAQEAAAxITGlubwIQAABtbnRyUkdCIFhZWiAHzgACAAkABgAxAABhY3NwTVNGVAAAAABJRUMgc1JHQgAAAAAAAAAAAAAAAAAA9tYAAQAAAADTLUhQICAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABFjcHJ0AAABUAAAADNkZXNjAAABhAAAAGx3dHB0AAAB8AAAABRia3B0AAACBAAAABRyWFlaAAACGAAAABRnWFlaAAACLAAAABRiWFlaAAACQAAAABRkbW5kAAACVAAAAHBkbWRkAAACxAAAAIh2dWVkAAADTAAAAIZ2aWV3AAAD1AAAACRsdW1pAAAD+AAAABRtZWFzAAAEDAAAACR0ZWNoAAAEMAAAAAxyVFJDAAAEPAAACAxnVFJDAAAEPAAACAxiVFJDAAAEPAAACAx0ZXh0AAAAAENvcHlyaWdodCAoYykgMTk5OCBIZXdsZXR0LVBhY2thcmQgQ29tcGFueQAAZGVzYwAAAAAAAAASc1JHQiBJRUM2MTk2Ni0yLjEAAAAAAAAAAAAAABJzUkdCIElFQzYxOTY2LTIuMQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAWFlaIAAAAAAAAPNRAAEAAAABFsxYWVogAAAAAAAAAAAAAAAAAAAAAFhZWiAAAAAAAABvogAAOPUAAAOQWFlaIAAAAAAAAGKZAAC3hQAAGNpYWVogAAAAAAAAJKAAAA+EAAC2z2Rlc2MAAAAAAAAAFklFQyBodHRwOi8vd3d3LmllYy5jaAAAAAAAAAAAAAAAFklFQyBodHRwOi8vd3d3LmllYy5jaAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABkZXNjAAAAAAAAAC5JRUMgNjE5NjYtMi4xIERlZmF1bHQgUkdCIGNvbG91ciBzcGFjZSAtIHNSR0IAAAAAAAAAAAAAAC5JRUMgNjE5NjYtMi4xIERlZmF1bHQgUkdCIGNvbG91ciBzcGFjZSAtIHNSR0IAAAAAAAAAAAAAAAAAAAAAAAAAAAAAZGVzYwAAAAAAAAAsUmVmZXJlbmNlIFZpZXdpbmcgQ29uZGl0aW9uIGluIElFQzYxOTY2LTIuMQAAAAAAAAAAAAAALFJlZmVyZW5jZSBWaWV3aW5nIENvbmRpdGlvbiBpbiBJRUM2MTk2Ni0yLjEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHZpZXcAAAAAABOk/gAUXy4AEM8UAAPtzAAEEwsAA1yeAAAAAVhZWiAAAAAAAEwJVgBQAAAAVx/nbWVhcwAAAAAAAAABAAAAAAAAAAAAAAAAAAAAAAAAAo8AAAACc2lnIAAAAABDUlQgY3VydgAAAAAAAAQAAAAABQAKAA8AFAAZAB4AIwAoAC0AMgA3ADsAQABFAEoATwBUAFkAXgBjAGgAbQByAHcAfACBAIYAiwCQAJUAmgCfAKQAqQCuALIAtwC8AMEAxgDLANAA1QDbAOAA5QDrAPAA9gD7AQEBBwENARMBGQEfASUBKwEyATgBPgFFAUwBUgFZAWABZwFuAXUBfAGDAYsBkgGaAaEBqQGxAbkBwQHJAdEB2QHhAekB8gH6AgMCDAIUAh0CJgIvAjgCQQJLAlQCXQJnAnECegKEAo4CmAKiAqwCtgLBAssC1QLgAusC9QMAAwsDFgMhAy0DOANDA08DWgNmA3IDfgOKA5YDogOuA7oDxwPTA+AD7AP5BAYEEwQgBC0EOwRIBFUEYwRxBH4EjASaBKgEtgTEBNME4QTwBP4FDQUcBSsFOgVJBVgFZwV3BYYFlgWmBbUFxQXVBeUF9gYGBhYGJwY3BkgGWQZqBnsGjAadBq8GwAbRBuMG9QcHBxkHKwc9B08HYQd0B4YHmQesB78H0gflB/gICwgfCDIIRghaCG4IggiWCKoIvgjSCOcI+wkQCSUJOglPCWQJeQmPCaQJugnPCeUJ+woRCicKPQpUCmoKgQqYCq4KxQrcCvMLCwsiCzkLUQtpC4ALmAuwC8gL4Qv5DBIMKgxDDFwMdQyODKcMwAzZDPMNDQ0mDUANWg10DY4NqQ3DDd4N+A4TDi4OSQ5kDn8Omw62DtIO7g8JDyUPQQ9eD3oPlg+zD88P7BAJECYQQxBhEH4QmxC5ENcQ9RETETERTxFtEYwRqhHJEegSBxImEkUSZBKEEqMSwxLjEwMTIxNDE2MTgxOkE8UT5RQGFCcUSRRqFIsUrRTOFPAVEhU0FVYVeBWbFb0V4BYDFiYWSRZsFo8WshbWFvoXHRdBF2UXiReuF9IX9xgbGEAYZRiKGK8Y1Rj6GSAZRRlrGZEZtxndGgQaKhpRGncanhrFGuwbFBs7G2MbihuyG9ocAhwqHFIcexyjHMwc9R0eHUcdcB2ZHcMd7B4WHkAeah6UHr4e6R8THz4faR+UH78f6iAVIEEgbCCYIMQg8CEcIUghdSGhIc4h+yInIlUigiKvIt0jCiM4I2YjlCPCI/AkHyRNJHwkqyTaJQklOCVoJZclxyX3JicmVyaHJrcm6CcYJ0kneierJ9woDSg/KHEooijUKQYpOClrKZ0p0CoCKjUqaCqbKs8rAis2K2krnSvRLAUsOSxuLKIs1y0MLUEtdi2rLeEuFi5MLoIuty7uLyQvWi+RL8cv/jA1MGwwpDDbMRIxSjGCMbox8jIqMmMymzLUMw0zRjN/M7gz8TQrNGU0njTYNRM1TTWHNcI1/TY3NnI2rjbpNyQ3YDecN9c4FDhQOIw4yDkFOUI5fzm8Ofk6Njp0OrI67zstO2s7qjvoPCc8ZTykPOM9Ij1hPaE94D4gPmA+oD7gPyE/YT+iP+JAI0BkQKZA50EpQWpBrEHuQjBCckK1QvdDOkN9Q8BEA0RHRIpEzkUSRVVFmkXeRiJGZ0arRvBHNUd7R8BIBUhLSJFI10kdSWNJqUnwSjdKfUrESwxLU0uaS+JMKkxyTLpNAk1KTZNN3E4lTm5Ot08AT0lPk0/dUCdQcVC7UQZRUFGbUeZSMVJ8UsdTE1NfU6pT9lRCVI9U21UoVXVVwlYPVlxWqVb3V0RXklfgWC9YfVjLWRpZaVm4WgdaVlqmWvVbRVuVW+VcNVyGXNZdJ114XcleGl5sXr1fD19hX7NgBWBXYKpg/GFPYaJh9WJJYpxi8GNDY5dj62RAZJRk6WU9ZZJl52Y9ZpJm6Gc9Z5Nn6Wg/aJZo7GlDaZpp8WpIap9q92tPa6dr/2xXbK9tCG1gbbluEm5rbsRvHm94b9FwK3CGcOBxOnGVcfByS3KmcwFzXXO4dBR0cHTMdSh1hXXhdj52m3b4d1Z3s3gReG54zHkqeYl553pGeqV7BHtje8J8IXyBfOF9QX2hfgF+Yn7CfyN/hH/lgEeAqIEKgWuBzYIwgpKC9INXg7qEHYSAhOOFR4Wrhg6GcobXhzuHn4gEiGmIzokziZmJ/opkisqLMIuWi/yMY4zKjTGNmI3/jmaOzo82j56QBpBukNaRP5GokhGSepLjk02TtpQglIqU9JVflcmWNJaflwqXdZfgmEyYuJkkmZCZ/JpomtWbQpuvnByciZz3nWSd0p5Anq6fHZ+Ln/qgaaDYoUehtqImopajBqN2o+akVqTHpTilqaYapoum/adup+CoUqjEqTepqaocqo+rAqt1q+msXKzQrUStuK4trqGvFq+LsACwdbDqsWCx1rJLssKzOLOutCW0nLUTtYq2AbZ5tvC3aLfguFm40blKucK6O7q1uy67p7whvJu9Fb2Pvgq+hL7/v3q/9cBwwOzBZ8Hjwl/C28NYw9TEUcTOxUvFyMZGxsPHQce/yD3IvMk6ybnKOMq3yzbLtsw1zLXNNc21zjbOts83z7jQOdC60TzRvtI/0sHTRNPG1EnUy9VO1dHWVdbY11zX4Nhk2OjZbNnx2nba+9uA3AXcit0Q3ZbeHN6i3ynfr+A24L3hROHM4lPi2+Nj4+vkc+T85YTmDeaW5x/nqegy6LzpRunQ6lvq5etw6/vshu0R7ZzuKO6070DvzPBY8OXxcvH/8ozzGfOn9DT0wvVQ9d72bfb794r4Gfio+Tj5x/pX+uf7d/wH/Jj9Kf26/kv+3P9t////2wBDAAMCAgICAgMCAgIDAwMDBAYEBAQEBAgGBgUGCQgKCgkICQkKDA8MCgsOCwkJDRENDg8QEBEQCgwSExIQEw8QEBD/2wBDAQMDAwQDBAgEBAgQCwkLEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBD/wAARCADtAk8DAREAAhEBAxEB/8QAGwABAAIDAQEAAAAAAAAAAAAAAAcIBAYJBQP/xABBEAEAAQMEAQEFAwYNAwUAAAAAAQIDBAUGBxEIEhMUFSExCRZBIjI4UXW0FxkjMzlCUldhd6a11DZidkNTdIGz/8QAGgEBAAMBAQEAAAAAAAAAAAAAAAIDBAEFBv/EAEARAQACAQIEAgQKCAUFAQAAAAABAhEDIQQSMUFRYQUTInEGFDI0cnOBkaGzFSQzNWKCsbIjQoOS8CU2UrTBw//aAAwDAQACEQMRAD8A6pgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA+eRTkVY92nEu27d+aKotV3Lc10U19fKaqYmmaoifrETHf64+qN4tNZik4ntmMxnzjMZ92Y96VJrFo5ozHft+O/8ASVE9teVnlbr3mlrviBf1jifFnRsSvMp3DRs/UrkXqYxrV+mJxZ1Wn0zMXYif5WeuvxS9Hfr+jravyfV823XONSKeWM5z+Hmjx8fEdTQp19bjyx7Nrefesx7t/J8fKry18qvGflPjfjK1q3FG5a+Qr9NinMq2fqWFGFM5NqzEzR8Wu+0/nfV9afp1+PaPBTPG+kY9Hxtnk3+na1enly5675ON/VOAnjeuOfbp8mtZ6+efDZs/nP5KeS3iHxztzkLRtU4y3Lb1HPtaNm42TtbUMaqMmq1duzftVU6lV1bmLXXs6omafr66u+oo1OI5OKroRG1omY8Y5YpE58czMzHTEYrvObTo0uHnU4e+rnemM+cTM4x4YjlieuZzO21W1ck8leU/HvjrqnPv3+4qz/hu26NwfCfuDqNr2nqtU3PY+3+NVdfnder0T9Po0el5/RWrfT+Vy3inh1vFM9/HOPsz3ZvRc/pLSpq/J5qTfx6Um2O3hjP24Z/ghzrzD5K8Q2eYuS7+zcXF1LIycPD0vQtGyse5YqsXZom5cv3su9FyKup6oi3T19fVP0a9XQjR0qWnebxmPKItasxjvOYiYnMY6Yntm0ta2tq3rG0UnHnM8tbRPl1mMYnO05jossytQAACDPNvmHeHAXjJvDlzYU4Xx3b9zS68anNse2sVxd1LFs3KK6ImJmKrd2un5TEx33ExMRIK++N32unCHKXuu3eZMX+DfcVzq371fuze0fIr+ncZHXqsd/OersRRTHy9pVIL26fqOn6tg2NU0rOx83DyrdN6xkY92m5au0VR3FVNVMzFUTHziYnoGQCoH2g/k3zv4l7S0fknj2dharouqana0evTNZ0TMryrN6qzduTdjItZtuiumfZdej2VMx9fVV9IyTxFqcTXQtvFotMT4cvLGJ65zMzOdsbRierVTQjV0LatdppjPnmZ3jwxttv3nMdHtck8leU/HvjrqnPv3+4qz/hu26NwfCfuDqNr2nqtU3PY+3+NVdfnder0T9Po1el5/RWrfT+Vy3inh1vFM9/HOPsz3ZPRc/pLSpq/J5qTfx6Um2O3hjP24a94zc9+W/kf462eYNEji2xrWsavTpuDp1WhZ1vGwbFvLpt5WVfuVahNV/q1Fyqm1RFE+qKfyqu5iNOroer9RMztqZmZ/wDGsRqRjHebXrWInOIiZzGN4o0tedT18RG9MRWP/K0+rnMz2iK2tnaZnETG/szqO+fLTyn2X5lbX8SPjHFWZ95cexkfeD7m6jb939pbvV9e6/Fp9fXseu/ax36v8Pnm9HT+kNfW0enq+bfrnl041PLGc47+Pk0cf+paOlrdefl8sZ1OT8Ov4ea3fF/8NFr4/hcyZG0825j6hTTouft3Bv4VrLwps0T6rti/kX6rd2Ls3KZiLk09RTMTPcrImk6NZxMXzOe8dsTG0duud8xPbEzG0WjVmInNMRMdpzvzRPuxGJjrE+OYjeUEgAAAHOjnT7UDc3jR5f734h3vsjH3HsTTLmmTi3cCqLGp4UXtNxb13qap9nkR67lcxRV6J/K/P6iIBb/gjym4L8kdK+I8T78wtSyrduLmVpV6fYajiR+PtMevquIifl66YmiZ+lUglgGBrtnXcjR8uxtnUcDA1Wu1MYmTn4VeXj2rn4VXLNF21Vcp/wC2LlEz/ahG8WmPYnE7dYztnfvHbpPad8T0SrNYn2o/528e/wB/Tbqo942eVnlb5A83cm8L5OscT7eu8b5F7Hr1CjZ+pZtOdNvKrx+4tzqtqbcT6PV+dV9ev8UuA/XfR0cf0+Rt1+VFp67dOXHTfPZHjY+J8dHBdcxac+UcuNvPm8dsd+r4788tfKrZXmTtbxIt6txRnTuWxj3/ALwVbP1K17vFyi7XMe7fFqvX1Fmf/Vjvv8EfR8zx+vraMber5t+ucacan2dcfj5HH/qWjpa3Xn5fLGdTk/Dr+Hm