Cuando se nace, se entra inmediatamente en el mundo y se encuentra con el lenguaje, más bien, con la lengua «materna»; pero, se ¿encuentra también la «matemática materna»?
La lengua se aprende desde el nacimiento, al entrar en un mundo donde se habla. Quien nace escucha, percibe, emite sonidos, imita aquello que escucha, los balbuceos se convierten en un reclamo que pueden ser reconocidos como palabras por quien está cerca. Se inicia, así, un proceso que conduce a hablar. Es la «lengua materna». Los problemas se presentan por la diferencia entre tal expresión lingüística y la lengua «oficial» de una comunidad ampliada. O pueden presentarse problemas particulares, como la sordera, o la afasia o el autismo. Pero la mayoría de las personas considera que la lengua es una forma «natural», y que su enseñanza puede proceder desde aquella base fundamental.
Para la matemática, es probable que la gran mayoría de las personas tenga otras convicciones.
La idea más difundida es que la matemática sea «transmitida» completamente. Además, hay convicciones muy arraigadas como aquella que sostiene que algunos niños y niñas tienen una inclinación natural para la matemática («tienen disposición natural para la matemática»).
Estas convicciones naturalísticas condicionan fuertemente la percepción de las dificultades, y por consiguiente las formas de afrontarlas. Es conocido que los sujetos con síndrome de Down eran considerados «naturalmente» incapaces de hacer funcionar el pensamiento matemático. Se decía que estaban privados de este tipo de pensamiento, sosteniendo además que no podían ir más allá de los números de una cifra, careciendo de pensamiento abstracto. Para muchos, matemática y pensamiento abstracto estaban ligados por una fuerza misteriosa.
Algo por tanto ha cambiado. Pero creemos que no todas las consecuencias de este cambio han sido «concientizadas» por quienes realizan tareas educativas en roles sociales (familiares) y profesionales (docentes y educadores sociales, psicólogos y otras profesiones «de apoyo»).
El texto de Bruno D´Amore, Martha Isabel Fandiño Pinilla, Ines Marazzani y Silvia Sbaragli, abordando el tema de las dificultades, puede ayudarnos a entender mejor algo importante: venimos al mundo y encontramos la lengua y la matemática; y están más vinculadas de lo que se cree, unidas por un proceso cultural y fisiológico que tiene una estructuración histórica compleja y fascinante. Tiene además dimensiones «micro» y «macro»: el individuo, con sus características específicas y originales; con límites normales y en algunos casos especiales; y el período amplio que llamamos «era». Y, es este el atractivo, las dos dimensiones se influencian recíprocamente y, por tanto, no pueden ser representadas como una dentro de la otra. Por esto hablamos de una estructuración compleja.
Se piensa en los sujetos con síndrome de Down, antes mencionado, pero pensemos también en los individuos con lesiones cerebrales: no han pasado muchos años desde la creencia generalizada (presente aún, y en individuos cuya preparación cultural hace casi increíble la permanencia de tal creencia) que la lesión, dañando el lenguaje, hace imposible el pensamiento. Las tecnologías, y no sólo, han hecho posible la contradicción total de dicha convicción. Y creemos que estas dimensiones «micro» influencian la dimensión «macro» en la cual parece que debemos sólo estar inmersos.
Quien crece debe explorar de muchas maneras, no sólo con su experiencia directa, sino a través de procesos deductivos e inductivos, composición de datos observados o supuestos; debe continuamente adaptar aquello que ha ordenado en su memoria. Es un proceso de crecimiento no uniforme ni idéntico. Comienza con el inicio de la vida, y la escuela tiene una gran tarea: convertir un proceso naturalístico individual en una estructuración extendida y codificada, capaz de introducir en una potencialidad más amplia y en continuo devenir.
Este paso es delicado. Pueden surgir dificultades, a las cuales se puede agregar la dificultad en el reconocimiento de la dificultad. Parece una paradoja, y en parte lo es.
Las dificultades pueden ser abordadas a partir de algunas «creencias»:
• considerar que las aptitudes (la inteligencia) sean innatas, y que la propuesta didáctica puede alterar muy poco, o nada, los resultados de dichas aptitudes;
• considerar que existen procesos de aprendizaje que se presentan en continuidad (de la «lengua materna» a la educación lingüística), y otros procesos donde la discontinuidad es neta (la matemática);
• considerar que quien tiene una dificultad confirmada por un determinado diagnóstico debe tener una forma para remover dicho obstáculo (una forma más fácil que otra), en una previsión de aprendizajes menos exigentes;
• considerar que quien tiene una dificultad confirmada por un determinado diagnóstico, debe ejercitarse y entrenar su voluntad, repitiendo ejercicios según un modelo considerado normal.
A estas «creencias» podemos contraponerles otras hipótesis de trabajo:
• los procesos de aprendizaje viven en un entretejido de aspectos informales y formales que conciernen a todos los campos del saber y a diversas disciplinas;
• la continuidad y la discontinuidad son siempre necesarias, y deben jugar en un entretejido constructivo dinámico y variado;
• la resistencia al aprendizaje es parte integrante del mismo, y quitarla del medio para facilitarle el camino a un sujeto con problemas particulares, puede ser un modo de acrecentar las dificultades (pensemos en quien tiene problemas de dislexia o discalculía, y es incitado a ejercitarse; un sadismo ciertamente no deliberado y fruto de la ignorancia del problema);
• todos los sujetos pueden ser apoyados en la búsqueda de su propia estrategia de aprendizaje; la pluralidad de estrategias puede acompañar una perspectiva unitaria.
La reflexión que Bruno D’Amore, Martha Isabel Fandiño Pinilla, Ines Marazzani y Silvia Sbaragli, hacen sobre el estatus de los errores, afecta una concepción del compromiso didáctico que busca liberarse del innatismo (la causa del error es interna, estable e incontrolable: «el estudiante ha cometido un error porque no es inteligente») por una dimensión constructivista (la causa es interna, variable y controlable: «el estudiante debe seguir trabajando para superar su error»).
Y esto conduce a que los mediadores y la lógica del dominó deberían conectarse.
Podemos utilizar la imagen de quien quiere atravesar un río para ir de una orilla a la otra y no desea mojarse: colocara los pies sobre las piedras que afloran, quizá coloque una piedra para construir un punto de apoyo (un mediador) donde faltara... Y los mediadores se conectan uno con otro. Si un mediador no invita al siguiente, no sería tal. Podría convertirse en fetiche, en prisionero, en cese forzado, en ilusión de paraíso alcanzado…
Quien lea encontrará un texto exigente y fascinante. La tarea de quien introduce, además de testimoniar el compartir que en este caso también es amistad, puede ser quien da un trasfondo complementario: no específico (no de un matemático) sino por un estudioso curioso, que frecuenta desde hace años las compañías (no malas) de quienes viven algunas dificultades.
Quién lee se conforte: los errores pueden ser fructíferos. Y las dificultades pueden mejorar la comprensión.
Es mejor pensar en un mundo imperfecto e incompleto y sentirse útil para contribuir a mejorarlo
¡Buena lectura!
Andrea Canevaro
Docente en la Facultad de Ciencias de la Formación,
Universidad de Bologna (Italia)
Aunque los estudios y las investigaciones teóricas y empíricas sobre el complejo proceso de enseñanza-aprendizaje de la matemática, sean los más consolidados y desarrollados respecto a estudios análogos de otras disciplinas, está a la vista de todos el hecho que, pese al mayor empeño de investigadores y docentes, persiste un quiebre estructural en el aprendizaje de esta disciplina.
A pesar del empuje innovador y los