Группа авторов

Food Chemistry


Скачать книгу

Fellows, P.J., Food Processing Technology: Principles and Practice, Elsevier, Woodhead Publishing, Sawston, United Kingdom, 2009.

      51. Ghosh, T. and Dash, K.K., Modeling on respiration kinetics and modified atmospheric packaging of fig fruit. J. Food Meas. Charact., 14, 1092–1104, 2020.

      52. Minh, N.P., Influence of modified atmospheric packaging and storage temperature on the physico-chemical, microbial and organoleptic properties of cantaloupe (Cucumis melo) fruit. Res. Crops, 21, 3, 506–511, 2020.

      53. Baswal, A.K., Dhaliwal, H.S., Singh, Z., Mahajan, B.V.C., Influence of Types of Modified Atmospheric Packaging (MAP) Films on Cold-Storage Life and Fruit Quality of ‘Kinnow’Mandarin (Citrus nobilis Lour X C. deliciosa Tenora). Int. J. Fruit Sci., 20, 1–18, 2020.

      54. Junior, M.M., Castanha, N., Dos Anjos, C.B.P., Augusto, P.E.D., Sarmento, S.B.S., Ozone technology as an alternative to fermentative processes to improve the oven-expansion properties of cassava starch. Food Res. Int., 123, 56–63, 2019.

      55. Pandiselvam, R., Subhashini, S., Banuu Priya, E.P., Kothakota, A., Ramesh, S.V., Shahir, S., Ozone based food preservation: a promising green technology for enhanced food safety. Ozone Sci. Eng., 41, 1, 17–34, 2019.

      56. Porto, E., Alves Filho, E.G., Silva, L.M.A., Fonteles, T.V., do Nascimento, R.B.R. et al., Ozone and plasma processing effect on green coconut water. Food Res. Int., 131, 109000, 2020.

      57. Brodowska, A.J., Nowak, A., Śmigielski, K., Ozone in the food industry: Principles of ozone treatment, mechanisms of action, and applications: An overview. Crit. Rev. Food Sci. Nutr., 58, 13, 2176–2201, 2018.

      58. Gallego-Juárez, J.A., Basic principles of ultrasound, in: Ultrasound Food Process, pp. 1–26, John Wiley & Sons, Woodhead Publishing, Sawston, United Kingdom, 2017.

      59. Misra, N.N., Schlüter, O., Cullen, P.J. (Eds.), Cold Plasma in Food and Agriculture: Fundamentals and Applications, Academic Press, Cambridge, Massachusetts, 2016.

      60. Knirsch, M.C., Dos Santos, C.A., de Oliveira Soares, A.A.M., Penna, T.C.V., Ohmic heating–a review. Trends Food Sci. Technol., 21, 9, 436–441, 2010.

      62. Liu, Y., Tang, T., Duan, S., Qin, Z., Zhao, H. et al., Applicability of Rice Doughs as Promising Food Materials in Extrusion-Based 3D Printing. Food Bioprocess. Tech., 13, 3, 548–563, 2020.

      63. Kalogeropoulos, N., Salta, F.N., Chiou, A., Andrikopoulos, N.K., Formation and distribution of oxidized fatty acids during deep-and pan-frying of potatoes. Eur. J. Lipid Sci., 109, 11, 1111–1123, 2007.

      64. Arvanitoyannis, I.S. and Dionisopoulou, N., Acrylamide: formation, occurrence in food products, detection methods, and legislation. Crit. Rev. Food Sci. Nutr., 54, 6, 708–733, 2014.

      65. Odueke, O.B., Farag, K.W., Baines, R.N., Chadd, S.A., Irradiation applications in dairy products: a review. Food Bioprocess. Tech., 9, 5, 751–767, 2016.

      66. Pati, S., Chatterji, A., Dash, B.P., Raveen Nelson, B., Sarkar, T. et al., Structural Characterization and Antioxidant Potential of Chitosan by γ-Irradiation from the Carapace of Horseshoe Crab. Polymers, 12, 10, 2361, 2020.

      67. Cserháti, T., Chromatography in authenticity and traceability tests of vegetable oils and dairy products: a review. Biomed. Chromatogr., 19, 3, 183–190, 2005.

      68. [15] Wang, M., Li, R., Zou, S., Determination of carbofuran residue in aquatic products by gas chromatography. Chin. J. Chromatogr., 26, 6, 775–777, 2008.

      69. McDowell, I., Taylor, S., Gay, C., The Phenolic Pigment Composition of Black Tea Liquors Part I: Predicting Quality. J. Agric. Food Chem., 69, 467–474, 1995.

      70. [22] Calabrese, M., Stancher, B., Riccobon, P., High-Performance Liquid Chromatography Determination of Proline Isomers in Italian Wines. J. Agric. Food Chem., 69, 361–366, 1995.

      71. Haughey, S.A., Graham, S.F., Cancouet, E., Elliott, C.T., The application of Near- Infrared Reflectance Spectroscopy (NIRS) to detect melamine adulteration of soya bean meal. Food Chem., 136, 3–4, 1557–1561, 2012.

      72. [31] Ozen, B.F. and Mauer, L.J., Detection of hazelnut oil adulteration using FTIR spectroscopy. J. Agric. Food Chem., 50, 3898–3901, 2002.

      73. Hohmann, M., Differentiation of Organically and Conventionally Grown Tomatoes by Chemometric Analysis of Combined Data from Proton Nuclear Magnetic Resonance and Mid-Infrared Spectroscopy and Stable Isotope Analysis. J. Agric. Food Chem., 63, 43, 9666–9675, 2015.

      74. [36] Drivelos, S.A. and Georgiou, C.A., Multi-element and multi-isotope-ratio analysis to determine the geographical origin of foods in the European Union. TrAC - Trends Analyt. Chem., 40, 38–51, 2012.

      75. Casale, M., Oliveri, P., Armanino, C., NIR and UV Vis spectroscopy, artificial nose and tongue: comparison of four fingerprinting techniques for the characterization of Italian red wines. Anal. Chim. Acta, 668, 143–148, 2010.

      77. Khan, S.K., Mirza, J., Anwar, F., Abdin, M.Z., Development of RAPD marker for authentication of Piper nigrum (L). Environ. We Int. J. Sci. Tech., 5, 47–56, 2010.

      78. [61] Babaei, S., Talebi, M., Bahar, M., Developing an SCAR and ITS reliable multiplex PCR-based assay for safflower adulterant detection in saffron samples. Food Control, 35, 1, 323–328, 2013.

      79. Dhanya, K., Syamkumar, S., Jaleel, K., Sasikumar, B., Random amplified polymorphic DNA technique for the detection of plant based adulterants in chilli powder (Capsicum annuum). J. Spices Aromat. Crops, 17, 75–81, 2008.

      80. [69] Cao, H., But, P.P., Shaw, P.C., Authentication of the Chinese drug “Ku-di-dan” (herba Elephantopi) and its substitutes using random-primed polymerase chain reaction (PCR). Acta Pharm. Sin., 31, 543–553, 1996.

      81. Martins-Lopes, P., Gome, S., Santos, E., Guedes-Pinto, H., DNA markers for Portuguese olive oil fingerprinting. J. Agric. Food Chem., 56, 24, 11786–1179, 2008.

      82. [75] Pereira, L., Martins-Lopes, P., Batista, C., Zanol, G.C., Clímaco, P., Brazão, J., Molecular markers for assessing must varietal origin. Food Anal. Methods, 5, 6, 1252–1259, 2012.

      83. Dhanya, K., Syamkumar, S., Siju, S., Sasikumar, B., Sequence characterized amplified region markers: A reliable tool for adulterant detection in turmeric powder. Food Res. Int., 44, 9, 2889–2895, 2011.

      84. Schiefenhovel, K. and Rehbein, H., Differentiation of Sparidae species by DNA sequence analysis, PCR-SSCP and IEF of sarcoplasmic proteins. Food Chem., 138, 1, 154–160, 2013.

      85. Cheng, C.Y., Shi, Y.C., Lin, S.R., Use of real-time PCR to detect surimi adulteration in vegetarian foods. J. Mar. Sci. Technol., 20, 5, 570–574, 2012.

      86. Kesmen, Z., Yetiman, A.E., Sahin, F., Yetim, H., Detection of Chicken and Turkey Meat in Meat Mixtures by Using Real-Time PCR Assays. J. Food Sci., 77, 2, C167–173, 2012.

      87. Zhang, W.J., Qin, C.X., Guan, Q.C., Analytical Methods, Detection of peanut (Arachis hypogaea) allergen by Real-time PCR method with internal amplification control. Food Chem., 174, 547–552, 2015.

      88. Wu, Y., Chen, Y., Wang, Y.G.J., Xu, B., Huang, W., Yuan, F., Detection of olive oil using the Evagreen real-time PCR method. Eur. Food Res. Technol., 227, 1117–1124, 2008.

      89. Drummond, M.G., Brasil, B.S.A.F., Dalsecco, L.S., Brasil, R.S.A.F., Teixeira, L.V., Oliveira, D.A.A., A versatile real-time PCR method to quantify bovine contamination