Alain Cardon

Information Organization of the Universe and Living Things


Скачать книгу

are thus based on the design of Turing machines. We define a general function on a given problem and its effective calculation amounts to defining the set of Turing machines which will represent it.

      However, we can proceed in a much more general way by using the differential equations of mathematics. In this framework, we first define functions and constants specifying the elements in relation in a physical system describing a natural phenomenon and we place these functions in differential equations representing the spatial–temporal relations between the observable elements of the phenomenon. We then seek the solutions of these differential equations giving the values of the functions and thus giving the solution of the problem of the relations and movements by comparing with the results of the physical observation to validate the equations. However, this problem does not always offer a good solution in fundamental physics which uses differential equations and partial differential equations representing the relations between the functions which are the characters of the studied problem, because the solution of these equations, if they are indeed calculable, is not always in agreement with the experimental measurements.

      This approach is characterized as ascending, because we start from the observation of the phenomenon and we try to represent it by variables and functions that describe its evolution. It is therefore assumed that there is a space available and that the physical phenomena that occur in this space with structured elements must be precisely described to measure their evolution.

      Computer science as a science of the calculable appears here. All these integer functions, all that mathematicians can define on these integers in the form of various equations, are equivalent to computer programs of abstract machines. It has been shown that for any function of a sequence of integers in another sequence of integers to make mathematical sense, to be coherent, there must exist some abstract machine, an “abstract computer”, with instructions that allow it to be calculated. The existential of all mathematical functions on integers has a meaning if the computable allows it to have one and vice versa. This very powerful theoretical result is the famous thesis of Alonzo Church, dating from 1936. It amounts to saying that for a function on integers to have a mathematical meaning, to be coherent, we need only define the program of a theoretical machine which can calculate it. If there is no such program, the function does not exist and is not logically admissible. Today, the fields of application of computer science are considerable, making it possible to represent practically all structurable knowledge in all fields and to direct quantities of electronic devices in real time.

      This locally mechanistic vision of the computing process has evolved a lot. Today, we know how to make many, many programs communicate, based on state machines, which run in parallel and, above all, which modify their own machines during their operation by communicating to synchronize themselves, even though the basis of each program is still the state machine. We have therefore shifted the framework of the regular automation of programs to the notion of autonomy. We know how to build programs made of many sub-programs which have their own behavior, which can communicate, synchronize, modify themselves and which can especially generate new programs breaking the order given by the initially conceived state machines. These systems are called adaptive multiprocess systems, and they are the ones that run on current computer clusters. Indeed, this is the case for any networked operating system that manages the simultaneously active resources and applications of a desktop computer, which is so common today. The notion of multiprocessing is important, and it has been a basic notion for the conception of artificial consciousness (Cardon 2018), because it places the consideration of programs at the level of autonomous software entities, active, carrying out precise local actions and above all highly communicative with each other in order to form dynamic structures that are constantly changing.

       – The notion of a functional process which is seen as a vast movement of components exchanging information and energy, and producing the state of a certain system, as is the case of brains producing representations. We can thus speak of the process of emergence of a form of thought about something focused from a trigger generating intention.

       – The much more precise notion of computer process, which is a small program wrapped in utilities and processed in a computer system that handles quantities of them simultaneously. We will then speak of swarms of processes to designate very numerous computer processes running in competition, this notion of swarm of processes being then close to the other notion of functional process.

      Generally speaking, there are two categories of programs in computer science:

       – The category of programs where it is a question of calculating a given function which is precise, well defined in advance, of strictly developing the calculations of all the necessary steps, which amounts to the execution of a structured set of state machines.

       – The category of autonomous programs composed of multiple swarms of processes that will run in parallel, that will capture