Мелани Митчелл

Идиот или гений? Как работает и на что способен искусственный интеллект


Скачать книгу

дает сигнал на выходе, только если сумма входных сигналов, помноженных на веса (то есть скалярное произведение входного вектора и вектора веса) больше или равняется 0. Часто входные значения масштабируются и подвергаются другим преобразованиям, чтобы веса не становились слишком велики.

      31

      Цит. по: M. Olazaran, “A Sociological Study of the Official History of the Perceptrons Controversy”, Social Studies of Science 26, no. 3 (1996): 611–659.

      32

      M. A. Boden, Mind as Machine: A History of Cognitive Science (Oxford: Oxford University Press, 2006), 2:913.

      33

      M. L. Minsky and S. L. Papert, Perceptrons: An Introduction to Computational Geometry (Cambridge, Mass.: MIT Press, 1969). (Минский М., Пейперт С. Персептроны / Пер. с англ. Г. Гимельфарба и В. Шарыпанова – М.: Издательство “Мир”, 1971.)

      34

      Выражаясь техническим языком, любую булеву функцию можно вычислить с помощью полностью подключенной многослойной сети с линейными пороговыми значениями и одним внутренним (“скрытым”) слоем.

      35

      Olazaran, “Sociological Study of the Official History of the Perceptrons Controversy”.

      36

      G. Nagy, “Neural Networks – Then and Now”, IEEE Transactions on Neural Networks 2, no. 2 (1991): 316–318.

      37

      Minsky and Papert, “Perceptrons”, 231–232. (Пер. с англ. Г. Гимельфарба и В. Шарыпанова.)

      38

      J. Lighthill, “Artificial Intelligence: A General Survey”, in Artificial Intelligence: A Paper Symposium (London: Science Research Council, 1973).

iVBORw0KGgoAAAANSUhEUgAAALwAAACRCAMAAABOpSJxAAAAGXRFWHRTb2Z0d2FyZQBBZG9iZSBJbWFnZVJlYWR5ccllPAAAAPNQTFRFWFZW0NDQ7e3tpKOjiomJe3p6u7u7sK+v2tra3Nzcv7+/7u7ukpGRuLi4sbGxzMzM5eXl1NTUZ2Zmurq6oqKiqqmpw8PDnp6ejYyMkpGSn56emZiYd3Z2qKenU1FRycnJ3dzcwsLCk5KStbW1iIeIk5KTy8vLhoSF09PTu7q609LTiIeHVVNUh4aGZGJjfHt7Pz09tbS0cXBwqqqqrq6unp2dioqKkJCQfXt8gX+AkpKSsrKyfXx8b25uPjw8goGCPz0+hYSEbWxsc3JyPjs8mZmZjYyNgYCAZmVll5aXxsbGamlp5OTk9vb2QT8/Ix8g////WEcKQgAAHXhJREFUeNrUXQd73MaSnMEgMYiSLMuW5BxfTvfe5ZxvMv7/r7mq7gEWS1IUaUqizM+WRXJ30ejpqa6u7oHN8jBf+W18iHkY21MJP1/jQ/U/O+MP7p4PizCZ8HMw3lW3xbwEToi5K7WWn4PxyST8w7/5+GmNy1LquPji04djfLPvSsiI13vavMDddgTgJKfAY7sPxfihDkf3ov/pag3yy4k38r3lj2B25l9sLX1+aONzdIl/1nANroRvaWek8biRmXAZE763y3gWK1+V8kMab6u4N0ho6O30X9SaGeN5RKjwdwbfBryqe0KTfUkOL0/wPG4mP5DxOcJ3Vp1uGc5DXmzy1RQ4FTH+O9xYB9urWBgSfnRuYW63JSx+Qvcwxo/iYYlwuQ/YjFA+6xPvYkk2FYZGqU4CvRYEV+k0ULINkfafAT/9gxgfanHduGTGCM2q1WYxSdaBkOKwkdP/8qVlwl/zJDfqs0RbSeYkxm8OAfdejadna/00IhBqnbrFw4eZa2BhUOBeMLXXNOVpbEtXfR3wqtinoX5WanmWH2bDdpN5UU9hPBAd21AWI1az0P+8sf6U+5N7wj3jneqq9NwEQ3EuT7x/+/5jXvIPnA2DEDZ5FABUD4s17sJPpvqJu7fD7sCtjW6Fp1oN/xgl+Jdg8/s1XvKPhE0/4G8Rm1I9OCr4Bd4D9u1UBWt+ja0qcFR6UwcxP4Y+M854v3fAy7fmeXUirr0YOLbt1a/PsCBpVPjnD7sMWD/HL1Mve6QH7s/id0Bnkvv07z3msdjWOkTAlEeSRPyRk3mMHFrEyPpqzGnb17FDxjIDkpQDNcNCYCsvCTHXLV+n9xfzLaNbhbjToIDPMP8ENOYFsR6+TF3oEdnEn+cxznI7pUN8AZccaGWKwpUB/bJqizXp3Ruf14w+AFWWYCTFIAE9itkD5ieP7Wm7GZA+1OL521i/W/IXEwMpLxPuIslWD9sGrzZwA/fv3HheRpmKsAI6lLYwmY4Ey660AI7ym46ujbOlm2eGfYGV08C3THwh4n3uq+eLh/zOjedlnIDNEwuqlXwv3LDPAZ/a4SdB7wb/7UOjEPI1bzkZ4V5qyEY2tBfQ/OVow3uI+Tx2I68DM2eyLqW/Q/UskBIN9/4gdPBfF8V4pV9ATvI0lCeRyB/4lop6lozhXRsPwzJ8Ddc7b5GHtKzOGdf2wPFjfQCbQ7hjHnPmKoTUsBUvGuF4VCP461CVPbCY8bfYtD/Z+AS8wDaky7jNfB1H5JlMegDwc0ahPbQ78JIB6Hsxacabc+xdNfy+UzRlmHH/5+ET+Vnp3pbxV1cSzmvVKvA9Cdmq9RP4ztXVp10udUZqCkPhvWFhSA2SLpsGDvIB0hhcXuatZJRFEyDLN0trtzTe35S0Z4Z3Qk0xnjKmH6nxXJKAzNN26RDIfXJ8VMqT6I1nDsZGHkIQbuG7fYzx1sCSQkk3XtjcFlhstjeFf1MBAOcBeEcGhn1QCzAvw6uCf4lm8tu/ocO/IcFJbd0I9SVtNdkjXMsFXvWzclPw3NL4bFN8HV/t+rSnCaGe91ZVgZGwI2YB0xlGGv7h02/C4zGkLN8H3aBxE6TggY/qx3JvtTxO9wob0VaU7iloX1pI/MbQjDGv3/eX3qu3n1cXzqi0kMcQO3S2A1UWJB0PHki4xmeiQ5R0vw1rKsqETL9LJQEXjVQaV7sAC/EkqgbQvg+iDhyRH9pRfc7tFSUF4TdJ9WK+KPdHdnpF1u6eaAMijp1/hjAAmiEa4CJXgyh1ohslKx7C5kuiHHkpBLv11mKWBSMcfhR10dIosX7x5VNa1zSPkUWXCFK4JR8a1N4XKh3ZOcGLvtXA587DytrcNWKWH2XsTiP3swjbaVdGUX0ma9+lOZyB2uTDonBfS+Sg0k1zfpWQpBwuVc0osFtRoIT7GQ8GckaIGMVkzxgqoaMiibyeGUMuISXFAZ53m0wphXYG+r/M2bT34gel/isXRfEvSz0iXJiRhJ/h7SOrQuXMtf6HlFz38by/QPiF34NlY5UXKqQUXcJQSSVxV//d2BbN6NfNyrtgmPOmeymWnN4ToBQhpPgXTPSaRyUXDC563tCwfiDIfrqX5zvBA+YNIBhi1lSbaqT903LuubFOYpimUKdJVJjvmqvAC+aqhbVYBheC9LTqMBFOhIcJr9/YpkaL/FeLxPvFvGgYQUolwDEshzumWiZGdxKvdRt9IP5MZCcgADAsKE0oTLiGUNIjyw5ReKjorV4DxBFsPe/EgS6YuN2I1Ar3Mp65O3TggJ+iNAXQhHhWWHlOym6a2VYDOihwljIiHKKhwBd9UAHEhdTcahuqY/P32CqjesjLu4lagyyAKSXdF21mAblCkC+4iqUKVjpwyJV0e+nM0KBT0ils3TNxXvMg/DyXXsokVnt+7GOeZHGQmaPGRpi4bLNIJSRnmgNuofzdbHwewIw+F47IMhOYYEtvhly2gNTsFc+BgfCaZyZaMgNGtt1YJFwKLH0VlhZjgFxuWS5EPP/CzCNLK6YN1+pI3QwlRF3Z7icaP9UvS31WjFM0wNUa3x2mFRTzV1EkbDD6z6jndSJvqN9l4S0DZZKEkFZVE3bP9O95xH4n08/8faC7s6ySaRrQjiKEcNewcQnxnBgqWsEZOlR44Ea0gUJPw2+ecV8Hqar7k+JzXG/S/gm5wJFZOiSJsfED3tCIROElyMooCnLqZpYBvKtiNuONrnFq9fAdjM8SjiiqQ0b+69UfSeU9oPyUPfbyU+1GanuBIdYxAyH6dYf+gBplTTvEFgBvsB87wRwGmYWhPxiQI5Vy8On93xPR2HsDG5qb1d7f1fOENMOKGpUOXFCGyYXMjxedie4tDPtiBE4JnXYczugo6h4tdoKU5ViOdFr4c9ZMhCa23rzq+Umwnp5HEvG+/lAou43GMJqCEGxhs2O+g/F8h22ryFDtQf46Lyjyq6+QIie40gq24+P/sQUnmRUIOaESVG5dwjzzN2k4ASRaf+IkEgwJDDNZpvF0EiDf4nWo7BVarfpQmeB4DEFvpAedZiqk1Q6OGURYHAZH3xG9KZWhAuGObXqBrMtQgyW1IT7CWHoMQA4bEHuiVwq76ZmxJRI73SOIy4Gp4qMcgFSCWaAZPZbmsXlMthRP7R2Mp+FcNFy6i1G3rDYsLwQ/1ukNH08vpPQUkI7GNBLP/s5jGkte0xtsBYliA+rItGbh1B4B6TUzYJ9gIQr93fW6TZAZyHKGVmi1ek4aXTcbjy1IPYtgBaeV1gkwp9hNZw3ByLOaFFJ/ZDPHUUaqTbcgRntPCAwqsP0VVdhUDT3tsD6xm+pkrXxu4QYfqYqkIE03Kiu8Xo/1fgk6AWTCyllUWotw9BuNlw1X6KChj/1GOuAcg8KiGldQ+pdzoT+BihE4T+kY0vN0gDXUKzZn36fsXf8E6Cj6aiZJ3jT9lZIVI6QDMZ8PHAflb8/4M6jcUd3OBAYt6m4wHsFHDYZ0wxzIEjPLiD+fSArtnBTmcPvX3zXBQ6nKXitDvJfWX7CbWtl1m/q3+3gRXLF05sCLW8IQcviKBSchGeQKd3iT50lALCh6V0d4eOAlhlT+Rz9tzD3uAZv/CSHbXZT4nZ2keNjLDEGMB//EYoUw2WA26juM094607xPsd4c2Y0QCdSbR8ZiTiuDpSx3k/FixHhuGA9eC+dFewLVaJXF/h7xkOI1E/vjPrsTuws8J+MRFlGckto4bLRd7O3L3tACy8e4Efr2o545mWHpd0NGIKY3h43FrcLpHrCL8vjpHBxpeGwhx7j09JMpMmHQ5ZkbrCDodaSj6Q1rWei1wthTdhi0DxDERL+VJe1lSC29W2/mz3Biq2jesGERMVga/+KEtQ7q1fIJ87tExcxk3YGUABV4OQ5ASPvJC9QAV6UmLXGrhMPaZ46NuJSW946KqNRgou7KkoTcAI7FuuWUooLdKts3oY0ReIHh/DdRJ2oTMtUNUdWCGXk2PufyFrN5sOMVpkNCfLraXmNsIcNtr9XTZi4/fahbFXv4OLmiX2RZupBu4XnslDFjj8UsaTl3CIWwCrliiUlMrgWY9B0V1MR690/f/+6XHhVvHGKpK/B4pOVLTvY6AoJNsNWwYycIGdNWyhoSKtRmQdVX1PV7NcTcJHooncsrIZK4KNM0DVLbNdBXRC5BZcWg3tnCwSwi5kluhv2O/asVFCX7Uamam5ODbiMkhnJIAK5jcRNTd7UyucnzLhyP0/jDzrL690hvz1U5WNP/0r809cKMc4ilJ1Mvq2C/g/qYLCjGbIWyc3GpxQbNB1LylBa2iM2xb/Bm1srkTioxguNHfO6EFIEwCVa9i0yuMQFsGLes9AI5v0qfifNwMWWN4TaA+CTGLk8hPAGYaVUyr5SYpoo/kuYlSlwBiTy1jsrcirPUZhxvZzy5LHjuaXQ9U6DZ1mCw+pk7aQsQ85zbCphZxglBkeO5eJKCA0ricqKCZf8S2YvgFKQLq61AQ41q0JZJWpj0cqyHaUw/sMno64UWobczvt2p1cxOf5GgSDaZg03MvPuuuERulZQcl61sAX4yfuAHJ+Kzea7tzUIsn9c9O4O2RVJXmeki9JbxuAvTDXW8U3MhKMMKs33uqG/UnKYcPp1Kg7N0/NLUetk6igJmr7SrlIsISkjRXPpQ4LU+hL/eYRCAS/c/uxQtTwmNTGva9qSA4W6dEUACSQq7fI7aqbPJSsKo2jyVvNdti+QHQ40wSmG6uC2L6vCEDlEGNqrqMZGJa/6a6ePBy2AastKwnyPayNMbjU/adzfaK9W8DcrwseLHRMospR77fEWKVY5CGMnrAXRMIrj42DatPVL+kRj8ETXbMkHfDStNDgr+eddjuq3QWoopfiv+ub8KOPs3mT6igufXasolq+PBvvVVqQqKt2VvNCkBKC5aW7fMwaS18nrtl3IGpN30U+Q+GEnqFfuC7OJnES7SLAQPdMbTIWw6aFPGZu8T9lca2RHECpiBonaV8I4bn+lzpyXCEKep7gsSs6ME68/j60V68+ZoxyrFHiQ6m63KYDjMyxNL1RrV9VlvJIm4R6U+rvXXnknTb/OWkni6XcERLxk4+bF8UxqRZMJrKy3/GWK4VyuzDTH7XZuIMCLdhShCR4w6Y/U0LKa8rMzGRpof2jnjRp2O7G3cqK7pK9SLAObyPa7kL7k+36sP23GIDPyg/2RPl6MINGL8OqdBPgGUPJFBT21eGckK3iq9WXfj4Q4MwTaaljND5Sx9N2z1VrnR+jcbn7Wf5NbyqbVtiIEvo1vOPssqhVOOCLOKfksr75nVkxPtYpylnjAa9hLeRUsRozq3LpMPdEgcUf5si/PTw8bHc76b1ThDQwUTfDcII6OQFDWiAP6mtVbBhvsDlU/DAQr9Mbxs+N/prBByEScpJDkkTi6uv73Upb012lQ7ryKAZHVQWUruqJNcGFyWxgxjA3WWjj7lFq0mpbBsAyk