James G. Speight

Encyclopedia of Renewable Energy


Скачать книгу

(v) biodiesel emits approximately the same amount of carbon dioxide that has been absorbed during cultivation of the oilseed, (vi biodiesel does not contain any of the carcinogenic polyaromatic components found in diesel oil, (vii) biodiesel has been recognized as a suitable outlet for the vegetable oil industry, serving as an important tool for market regulation, (viii) biodiesel can be used in blends or as a neat fuel, (ix) biodiesel is not considered as a hazardous good because it has a flash point above 110°C (230°F), (x) biodiesel has a superior lubrication capability and increases engine life, and (xi) biodiesel can be produced with a rather straight forward technology, particularly in the case of methyl esters (methanolysis).

      The use of biodiesel in a conventional diesel engine also results in substantial reduction of unburned hydrocarbon derivatives, carbon monoxide, and particulate matter. Emissions of nitrogen oxides are either slightly reduced or slightly increased depending on the duty cycle and testing methods. The higher oxygen content of biodiesel enables a more complete combustion of the solid carbon fraction to carbon dioxide, while soluble hydrocarbon derivatives are unaffected or even increased.

      See also: Bioalcohols, Biofuels – First Generation, Biofuels – Second Generation, Biofuels – Third Generation, Biogas, Vegetable Oil.

      Biodiesel Feedstocks

Oil or Fat 14:0* 16:0 18:0 18:1 18:2 18:3
Corn oil 1-2 8-12 2-5 19-49 34-52 Trace
Cottonseed oil 0-2 20-25 1-2 23-35 40-50 Trace
Linseed oil 4-7 2-4 25-40 35-40 25-60
Olive oil 9-10 2-3 73-84 10-12 Trace
Peanut oil 8-9 2-3 50-60 20-30
Safflower oil – Hi linoleic acid 5.9 1.5 8.8 83.8
Safflower oil – Hi oleic acid 4.8 1.4 74.1 19.7
Rapeseed oil – Hi oleic acid 4.3 1.3 59.9 21.1 13.2
Rapeseed oil – Hi erucic acid 3.0 0.8 13.1 14.1 9.7
Soybean oil 6-10 2-5 20-30 50-60 5-11
Tallow 3-6 24-32 20-25 37-43 2-3
Yellow grease 2 23 13 44.3 7 0.7
*Indicates the number of carbon atoms in the alkyl chain and the position of the double bond.

      However, for a given production line, the comparison of the feedstocks includes several issues which are (i) chemical composition of the biomass, (ii) cultivation practices, (iii) availability of land and land use practices, (iv) use of resources, (v) energy balance, (vi) emission of greenhouse gases, acidifying gases, and ozone depletion gases, (vii) absorption of minerals to water and soil, (viii) injection of pesticides, (ix) soil erosion, (x) contribution to biodiversity and landscape value losses, (xi) farm-gate price of the biomass, (xii) logistic costs such as transport and storage of the feedstock), (xiii) direct economic value of the feedstocks taking into account the co-products, (xiv) creation or maintenance of employment, and (xv) water requirements and water availability. In addition, different types of feedstocks have different types of fatty acids. The fatty acids are different in relation to the chain length, degree of unsaturation, or presence of other chemical functions, such as fatty acids.

      Tropical countries have the highest potential to produce bio-fuel crops: higher energy yields, better greenhouse gas balance if properly produced, lower costs, and in some countries, large reserves of uncultivated cropland. Sugar cane and palm are the highest yielding tropical biofuel crops and consequently provide the greatest carbon offsets. Industrialized countries with biofuels targets (such as the United States and the