first be converted to sugars by hydrolysis and then fermented to produce ethanol. Cellulosic feedstocks (composed of cellulose and hemicellulose) are more difficult to convert to sugar than are carbohydrates. Two common methods for converting cellulose to sugar are dilute acid hydrolysis and concentrated acid hydrolysis, both of which use sulfuric acid.
Dilute acid hydrolysis occurs in two stages to take advantage of the differences between hemicellulose and cellulose. The first stage is performed at low temperature to maximize the yield from the hemicellulose, and the second, higher temperature stage is optimized for hydrolysis of the cellulose portion of the feedstock. Concentrated acid hydrolysis uses a dilute acid pretreatment to separate the hemicellulose and cellulose. The biomass is then dried before the addition of the concentrated sulfuric acid. Water is added to dilute the acid and then heated to release the sugars, producing a gel that can be separated from residual solids. Column chromatographic is used to separate the acid from the sugars.
Both the dilute and concentrated acid processes have several drawbacks. Dilute acid hydrolysis of cellulose tends to yield a large amount of by-products. Concentrated acid hydrolysis forms fewer by-products, but for economic reasons, the acid must be recycled. The separation and concentration of the sulfuric acid add more complexity to the process. The concentrated and dilute sulfuric acid processes are performed at high temperatures (100 and 220°C, 212 and 430°F) which can degrade the sugars, reducing the carbon source and ultimately lowering the ethanol yield. Thus, the concentrated acid process has a smaller potential for cost reductions from process improvements such as acid recovery and sugar yield for the concentrated acid process could provide higher efficiency for both technologies.
Another approach involves countercurrent hydrolysis, a two-stage process. In the first stage, cellulose feedstock is introduced to a horizontal co-current reactor with a conveyor. Steam is added to raise the temperature to 180°C (355°F; no acid is added at this point). After a residence time of approximately 8 minutes, during which some 60% of the hemicellulose is hydrolyzed, the feed exits the reactor. It then enters the second stage through a vertical reactor operated at 225°C (435°F). Very dilute sulfuric acid is added to the feed at this stage, where virtually all of the remaining hemicellulose and, depending on the residence time, anywhere from 60% w/w to all of the cellulose is hydrolyzed. The countercurrent hydrolysis process offers higher efficiency (and, therefore, cost reductions) than the dilute sulfuric acid process. This process may allow an increase in glucose yields to 84% w/w, an increase in fermentation temperature to 55°C (131°F), and an increase in fermentation yield of ethanol to 95% w/w.
The greatest potential for ethanol production from biomass, however, lies in enzymatic hydrolysis of cellulose. The enzyme cellulase, now used in the textile industry to stone wash denim and in detergents, simply replaces the sulfuric acid in the hydrolysis step. The cellulase can be used at lower temperatures, 30 to 50°C (86 to 122°F), which reduces the degradation of the sugar. In addition, process improvements now allow simultaneous saccharification and fermentation (SSF). In the saccharification and fermentation process, cellulase and fermenting yeast are combined, so that as sugars are produced, the fermentative organisms convert them to ethanol in the same step. Once the hydrolysis of the cellulose is achieved, the resulting sugars must be fermented to produce ethanol. In addition to glucose, hydrolysis produces other six-carbon sugars from cellulose and five-carbon sugars from hemicellulose that are not readily fermented to ethanol by naturally occurring organisms. They can be converted to ethanol by genetically engineered yeasts that are currently available, but the ethanol yields are not sufficient to make the process economically attractive. It also remains to be seen whether the yeasts can be made hardy enough for production of ethanol on a commercial scale.
A large variety of feedstocks is currently available for producing ethanol from cellulosic biomass. The materials being considered can be categorized as agricultural waste, forest residue, and energy crops. Agricultural waste available for ethanol conversion includes crop residues such as wheat straw, corn stover (leaves, stalks, and cobs), rice straw, and bagasse (sugar cane waste). Forestry waste includes underutilized wood and logging residues; rough, rotten, and salvable dead wood; and excess saplings and small trees. Energy crops, developed and grown specifically for fuel, include fast-growing trees, shrubs, and grasses such as hybrid poplars, willows, and switchgrass.
Briefly, corn stover is the leaves and stalks of field crops, such as corn (maize), sorghum, or soybean that are commonly left in a field after harvesting the grain. Corn stover is similar to straw, which is the residue left after any cereal grain or grass has been harvested at maturity for its seed and can be directly grazed by cattle or dried for use as fodder; stover has attracted some attention as a potential fuel source, and as a biomass feedstock for fermentation or as a feedstock for ethanol production from cellulose.
Although the choice of feedstock for ethanol conversion is largely a cost issue, feedstock selection has also focused on environmental issues. Materials normally targeted for disposal include forest thinnings collected as part of an effort to improve forest health, and certain agricultural residues, such as rice straw. Also, forest residues represent an opportunity to decrease the fire hazard associated with the dead wood present in many forests. Small quantities of forest thinnings can be collected at relatively low cost, but collection costs rise rapidly as quantities increase.
Agricultural residues, in particular corn stover, represent a tremendous resource base for biomass ethanol production. Agricultural residues, in the long term, would be the sources of biomass that could support substantial growth of the ethanol industry. At conversion yields of around 60 to 100 gal per dry ton, the available corn stover inventory would be sufficient to support 7 to 12 billion (7 to 12 x 109) gal of ethanol production per year.
Dedicated energy crops such as switchgrass, hybrid willow, and hybrid poplar are another long-term feedstock option. Switchgrass is grown on a 10-year crop rotation basis, and harvest can begin in year 1 in some locations and year 2 in others. Willows require a 22-year rotation, with the first harvest in year 4 and subsequent harvests every 3 years thereafter. Hybrid poplar requires 6 years to reach harvest age in the Pacific Northwest, 8 years in the Southeast, Southern Plains, and South Central regions, and 10 years in the Corn Belt, Lake States, Northeast and Northern Plains regions.
The use of cellulosic biomass in the production of ethanol also has environmental benefits. Converting cellulose to ethanol increases the net energy balance of ethanol compared to converting corn to ethanol. The net energy balance is calculated by subtracting the energy required to produce a gallon of ethanol from the energy contained in a gallon of ethanol (approximately 76,000 Btu). Corn-based ethanol has a net energy balance of 20,000 to 25,000 Btu per gallon, whereas cellulosic ethanol has a net energy balance of more than 60,000 Btu per gallon. In addition, cellulosic ethanol use can reduce greenhouse gas emissions. Cellulosic ethanol can produce an 8 to 10% reduction in greenhouse gas emissions when used in E10 and a 68 to 91% reduction when used in E85.
See also: Agricultural Residue, Agricultural Waste, Biomass, Alcohols.
Alcohol Fuels - Methanol
Alcohols are organic compounds that contain at least one hydroxyl functional group (-OH) bound to a saturate carbon atom. The term alcohol originally referred to the primary alcohol ethanol (ethyl alcohol, CH3CH2OH or C2H5OH), which is used as a drug or as a relaxant-intoxicant in the form of alcoholic beverages. An important class of alcohols, of which methanol (methyl alcohol, CH3OH) and ethanol are the simplest members, includes all compounds for which the general formula is CnH2n+1OH. Simple mono-alcohols (one hydroxyl group per molecule) include the primary alcohol derivatives (RCH2OH), the secondary alcohol derivatives (R2CHOH), and the tertiary alcohol derivatives (R3COH) alcohols.
Methanol is a colorless, odorless, and nearly tasteless alcohol and is also produced from crops and is also used as a fuel. Methanol, like ethanol, burns more completely but releases as much or more carbon dioxide than its gasoline counterpart. The balance is often seen as the various bi-processes that draw carbon dioxide from the atmosphere so there is no net modern release, as there is for fossil fuels.
Methanol