Группа авторов

Intelligent Renewable Energy Systems


Скачать книгу

379

      378  380

      379  381

      380  382

      381  383

      382  384

      383  385

      384  386

      385  387

      386  388

      387  389

      388  390

      389  391

      390  392

      391  393

      392  394

      393  395

      394  396

      395  397

      396  398

      397  399

      398  400

      399  401

      400  402

      401  403

      402  404

      403  405

      404  406

      405  407

      406  408

      407  409

      408  410

      409  411

      410  412

      411  413

      412  414

      413 415

      414  416

      415  417

      416  418

      417  419

      418  420

      419  421

      420  422

      421  423

      422  424

      423  425

      424  426

      425 427

      426 428

      427  429

      428  430

      429  431

      430  432

      431  433

      432  435

      433  436

      434  437

      435 438

      436 439

      437 440

      438 441

      439 442

      440 443

      441 444

      442 445

      443 446

      444 447

      445 448

      446 449

      447 450

      448  451

      449 452

      450  453

      Scrivener Publishing 100 Cummings Center, Suite 541J Beverly, MA 01915-6106

       Artificial Intelligence and Soft Computing for Industrial Transformation

       Series Editor: Dr S. Balamurugan ([email protected])

      Scope: Artificial Intelligence and Soft Computing Techniques play an impeccable role in industrial transformation. The topics to be covered in this book series include Artificial Intelligence, Machine Learning, Deep Learning, Neural Networks, Fuzzy Logic, Genetic Algorithms, Particle Swarm Optimization, Evolutionary Algorithms, Nature Inspired Algorithms, Simulated Annealing, Metaheuristics, Cuckoo Search, Firefly Optimization, Bio-inspired Algorithms, Ant Colony Optimization, Heuristic Search Techniques, Reinforcement Learning, Inductive Learning, Statistical Learning, Supervised and Unsupervised Learning, Association Learning and Clustering, Reasoning, Support Vector Machine, Differential Evolution Algorithms, Expert Systems, Neuro Fuzzy Hybrid Systems, Genetic Neuro Hybrid Systems, Genetic Fuzzy Hybrid Systems and other Hybridized Soft Computing Techniques and their applications for Industrial Transformation. The book series is aimed to provide comprehensive handbooks and reference books for the benefit of scientists, research scholars, students and industry professional working towards next generation industrial transformation.

      Publishers at Scrivener Martin Scrivener ([email protected]) Phillip Carmical ([email protected])

      Intelligent Renewable Energy Systems

      Edited by

       Neeraj Priyadarshi

       Akash Kumar Bhoi

       Sanjeevikumar Padmanaban

       S. Balamurugan

      and

       Jens Bo Holm-Nielsen

images

      This edition first published 2022 by John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, USA and Scrivener Publishing LLC, 100 Cummings Center, Suite 541J, Beverly, MA 01915, USA

      © 2022 Scrivener Publishing LLC

      For more information about Scrivener publications please visit www.scrivenerpublishing.com.

      All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, except as permitted by law. Advice on how to obtain permission to reuse material from this title is available at http://www.wiley.com/go/permissions.

       Wiley Global Headquarters

      111 River Street, Hoboken, NJ 07030, USA

      For details of our global editorial offices, customer services, and more information about Wiley products visit us at www.wiley.com.

       Limit of Liability/Disclaimer of Warranty

      While the publisher and authors have used their best efforts in preparing this work, they make no representations or warranties with respect to the accuracy or completeness of the contents of this work